

MAYO CLINIC

Aortic Stenosis Severity is Universally Under-estimated in Atrial Fibrillation: Time to Change the Guidelines

Said Alsidawi, MD Assistant Professor of Medicine and Consultant Mayo Clinic School of Medicine Director, Hypertrophic Cardiomyopathy Program Co-Chair, Research Unit and Clinical Trials Department of Cardiovascular Disease

MHI Grand Rounds 3/10/2025

Objectives:

1. Outline how atrial fibrillation complicates the assessment of aortic stenosis

2. Review available data that supports the universal underestimation of aortic stenosis in patients with atrial fibrillation

3. Propose a new contemporary approach to assess aortic stenosis severity when accompanied by atrial fibrillation

3

TINK GD

aortic	stenosis		
	Aortic Jet Velocity (m/s)	Mean Gradient (mmHg)	Valve Area (cm²)
Normal	≤2.0	<5	3.0-4.0
Mild	<3.0	<25	>1.5
Moderate	3.0-4.0	25–40	1.0–1.5
Severe	>4.0	>40	<1.0
MAYO LINIC			Nishimura et al. Circ 2014

Table 4: Calcium Score by Computed Tomography in Grading of Aortic Stenosis

	Men	Women
Severe aortic stenosis very likely	≥3,000	≥1,600
Severe aortic stenosis likely	≥2,000	≥1,200
Severe aortic stenosis unlikely	<1,600	<800

Source: Baumgartner, et al., 2017.24

MHIF Cardiovascular Grand Rounds | March 10, 2025

13

MHIF Cardiovascular Grand Rounds | March 10, 2025

15

	Group 1, LF/HG (n=50, 3%)	Group 2, LF/LG (n=53, 3%)	Group 3, NF/LG (n=352, 21%)	Group 4, NF/HG (n=1249, 73%)	<i>P</i> Value
Age, y	76±14	77±12	80±11†	77±12‡	0.0009
Female sex, n (%)	13 (26)	18 (34)	203 (58)*†	519 (42)‡	< 0.0001
Body mass index, kg/m ²	35.6±7.5	31.5±8.4*	27.8±5.5*†	28.8±6.0*†‡	< 0.0001
Body surface area, m ²	2.17±0.25	2.01±0.24*	1.82±0.22*†	1.92±0.24*†‡	< 0.0001
Symptoms					
Any symptoms, n (%)	40 (80)	41 (77)	188 (53)*†	924 (74)‡	<0.0001
Dyspnea, n (%)	39 (78)	32 (60)	167 (47)*†	816 (65)‡	<0.0001
Angina, n (%)	4 (8)	12 (23)	45 (13)	227 (18)‡	0.01
Syncope, n (%)	4 (8)	5 (9)	11 (3)	67 (5)	0.12
NYHA class	2.5±0.9	2.0±0.8*	1.9±0.8*	2.1±0.8*‡	<0.0001
Comorbidities and laboratory values					
Atrial fibrillation history, n (%)	16 (32)	27 (51)	69 (20)*†	173 (14)*†	<0.0001
Obesity, n (%)	39 (78)	25 (47)*	102 (29)*†	454 (36)*†‡	< 0.0001
Hypertension, n (%)	35 (70)	42 (79)	289 (82)†	884 (71)‡	0.0001
Previous CAD, n (%)	12 (24)	23 (43)*	143 (41)*	294(24)†‡	<0.0001
Previous PCI, n (%)	7 (14)	8 (15)	45 (13)	154 (12)	0.93
Previous CABG, n (%)	9 (18)	4 (8)	46 (13)	174 (14)	0.41
Diabetes mellitus, n (%)	28 (56)	26 (49)	165 (47)	503 (40)*	0.03

Optimal Number of Beats for the Doppler Measurement of Cardiac Output in Atrial Fibrillation Simon W. Dubrey, MD, and Rodney H. Falk, MD, Boston, Massachusetts This study was undertaken to determine the optimum number of Doppler velocity waveforms required to calculate cardiac output in atrial fibrillation with the same degree of accuracy as that for sinus rhythm. Twenty-one patients in atrial fibrillation underwent calculations of cardiac output derived from aortic Doppler waveform velocity time integrals and RR in-tervals. The variability in estimates of the cardiac out-put was calculated with the successive addition of se-quential beats and compared with that determined in a control group of 12 subjects in sinus rhythm. For the group in atrial fibrillation, a mean of 13 beats (range 4 to 17 beats) was required to achieve an estimation of cardiac output with a variability of less than 2%, com-pared with a mean of four beats in sinus rhythm. In the statistic fibrility of the statistic of the statistic of the statistic statistic fibrility of the statistic of the statistic of the statistic statistic fibrility of the statistic of the statistic of the statistic statistic fibrility of the statistic of the statistic of the statistic statistic fibrility of the statistic of the statistic of the statistic statistic of the statistic statistic of the statistic of the statistic of the statistic of the statistic statistic of the statistic statistic of the statis atrial fibrillation, the mean number of beats required to determine cardiac output was approximately three times that necessary in sinus rhythm. (J Am Soc Echo-cardiogr 1997;10:67-71.) 100 80 ATRIAL FIBRILLATION Number 60 of SINUS RHYTHM subjects 40 (%) 20 10 12 14 MAYC CLINK Number of beats

MHIF Cardiovascular Grand Rounds | March 10, 2025

27

MHIF Cardiovascular Grand Rounds | March 10, 2025

31

MHIF Cardiovascular Grand Rounds | March 10, 2025

49

MHIF Cardiovascular Grand Rounds | March 10, 2025

Characteristic	2-year prior N = 136 ¹	TAVI N = 136 ⁷	P-value ²	
EF%	61 (55, 66)	57 (46, 64)	< 0.001	
E/ARatio	1.08 (0.80, 1.33)	1.25 (0.80, 2.00)	<0.001	
E/e'Ratio(medial)	20 (15, 25)	18 (0, 27)	<0.001	
LAVI	46 (38, 57)	52 (43, 63)	0.006	
MPG	30 (21, 38)	41 (32, 48)	< 0.001	
Peak velocity	3.50 (3.00, 4.00)	4.10 (3.70, 4.50)	< 0.001	
AVA (TVI)	1.08 (0.87, 1.28)	0.84 (0.68, 0.94)	<0.001	
AVA Index (Velocity)	0.55 (0.47, 0.65)	0.45 (0.38, 0.51)	<0.001	
AVA Index (TVI)	0.53 (0.46, 0.65)	0.43 (0.36, 0.49)	< 0.001	
LVSVI	45 (39, 52)	42 (36, 50)	0.016	
RV function (TAPSE)	17 (14, 21)	18 (13, 21)	0.319	
Moderate or severe MR	24 (17.6%)	49 (36%)	<0.001	
Moderate or severe TR	31 (22.7%)	49 (36%)	< 0.001	Under rev

