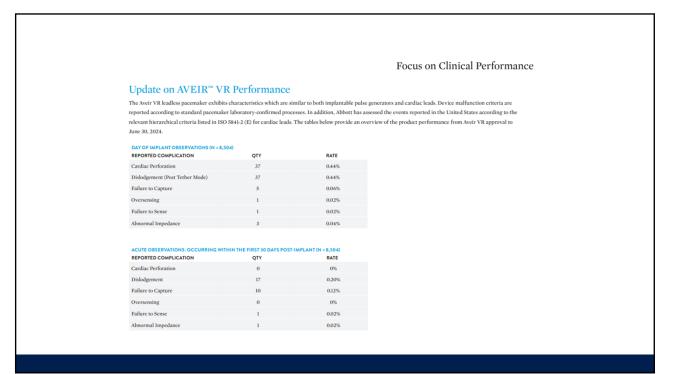
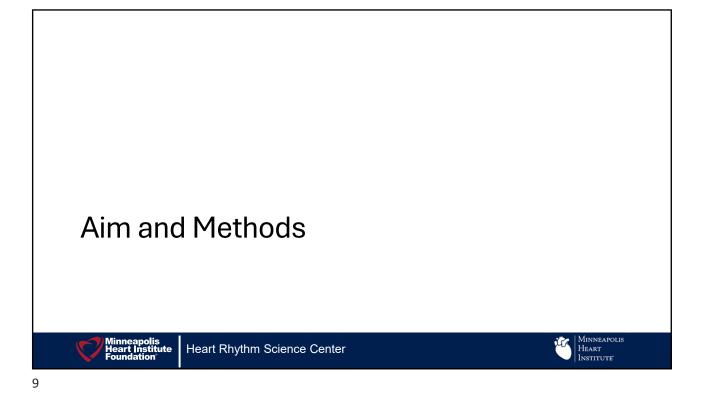

MHIF Cardiovascular Grand Rounds | March 24, 2025

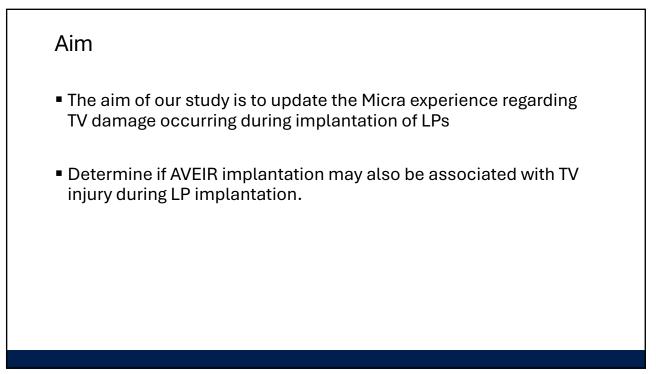


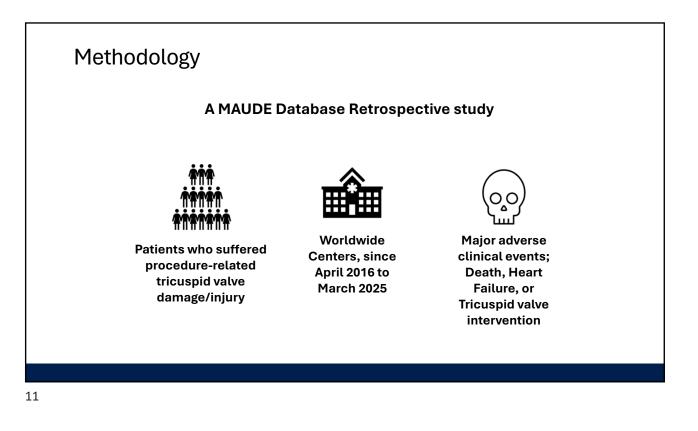
	Micra VR	Micra AV	AVEIR VR	RV.AVEIR DR
Manufacturer	Medt	ronic	Ab	bott
Approval year	Apr.2016	Jan.2020	Mar.2022	Jun.2023
USA implanted devices since approval	71,898	68,885	8,504	N/A
Device	Medtronic			Abbott Aveir"

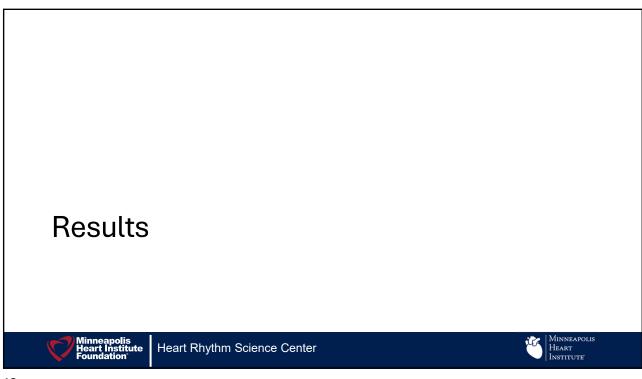
Table 2. Major Complications in 725 Patie	nts Who Ur	derwent a Tra	inscatheter Pacema	ker Implantation Atte	empt.				Pri	Phase 1 mary Coho	rt	Pri	Phase 2 mary Coh	ort
Adverse Event		No. of Ever	nts Associated with	Major Complication	Criterion®		No. of Patients (%)†	Event	No. of Events	(n = 300) No. of Patients	Event Rate, %	No. of Events	(n = 200) No. of Patients	Ev
		Loss of						Total	22	201	6.7%	9	81	4.
	Death	Device Function	Hospitalization	Prolonged Hospitalization:	System Revision	Total Events		Cardiac perforation/tamponade/pericardial effusion	4	4	1.3%	3	3	1.5
Embolism and thrombosis	0	0	1	1	0	2	2 (0.3)	Premature deployment with device migration	0	0	0.0%	2	2	1.0
Deep vein thrombosis	0	0	0	1	0	1	1 (0.1)	Premature deployment without device migration	0	0	0.0%	1	1	0.5
Pulmonary thromboembolism	0	0	1	0	0	1	1 (0.1)	Access site bleeding event	2	2	0.7%	1	1	0.
Events at groin puncture site: atrioventric- ular fistula or pseudoaneurysm	0	0	2	3	0	5	5 (0.7)	Pulmonary embolism	1	1	0.3%	1	1	0.
Traumatic cardiac injury: cardiac perfora- tion or effusion	0	0	3	9	0	11	11 (1.6)	Deep vein thrombosis	0	0	0.0%	1	1	0
Pacing issues: elevated thresholds	0	1	2	1	2	2	2 (0.3)	Device dislodgement	5	5	1.7%	0	0	0.
Other events	1	0	s	4	1	8	8 (1.7)	Threshold elevation resulting in LP retrieval	4	4	1.3%	0	0	0
Acute myocardial infarction	0	0	0	1	0	1	1 (0.1)	Arteriovenous fistula	1	1	0.3%	0	0	0.
Cardiac failure	0	0	3	2	0	3	3 (0.9)	Pseudoaneurysm	1	1	0.3%	0	0	0
Metabolic acidosis	1	0	0	0	0	1	1 (0.1)	Asystole during implant procedure	1	1	0.3%	0	0	0
Pacemaker syndrome	0	0	1	0	1	1	1 (0.2)	Ventricular tachycardia or ventricular fibrillation	1	1	0.3%	0	0	0.
Presyncope	0	0	0	1	0	1	1 (0.1)	during implant procedure	-		0.376	•	•	0.
Syncope	0	0	1	0	0	1	1 (0.1)	Pericarditis	1	1	0.3%	0	0	0.
Total	1	1	13	18	3	28	25 (4.0)	Orthostatic hypotension with weakness	1	1	0.3%	0	0	0.

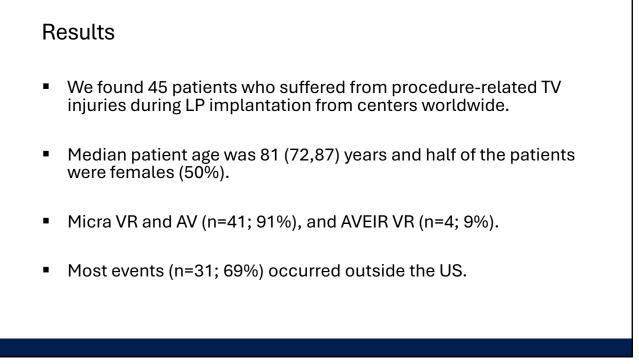
JOURNAL ARTICLE

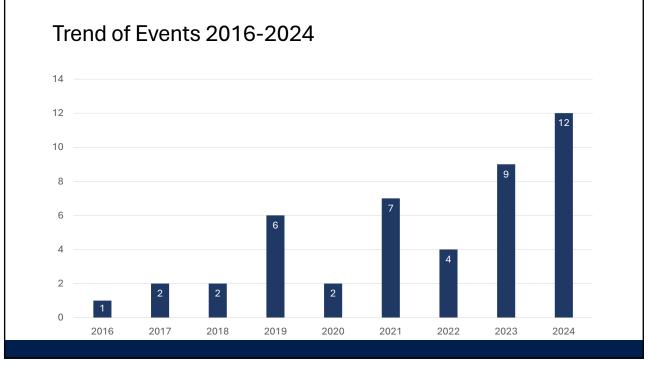

Tricuspid valve complications during leadless pacemaker implantation @

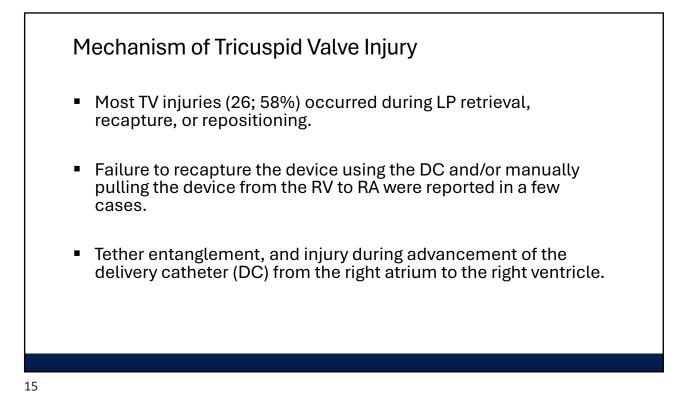

R Hauser, S Casey, J Sengupta

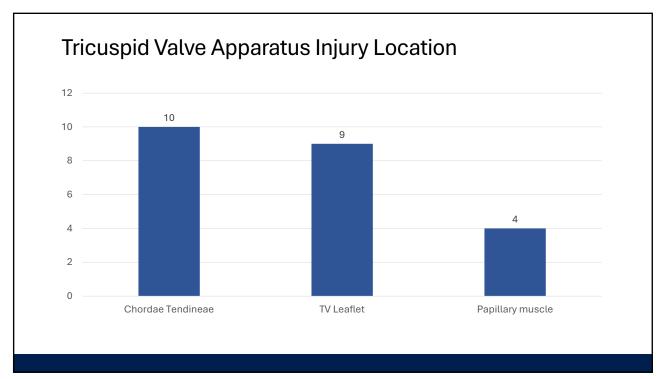

EP Europace, Volume 24, Issue Supplement_1, May 2022, euac053.398, https://doi.org/10.1093/europace/euac053.398 **Published:** 19 May 2022

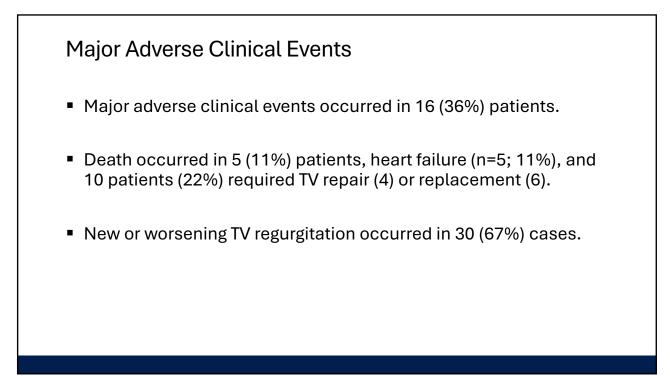

Results

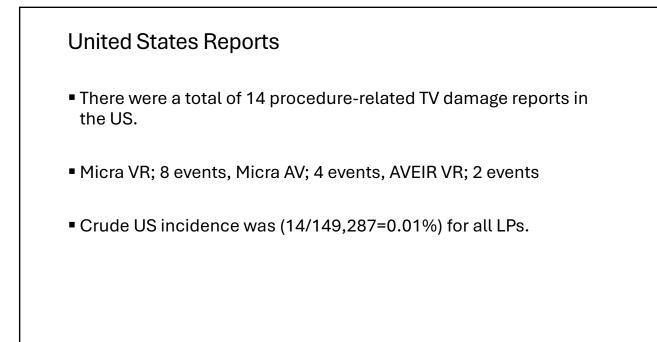

From 2016-October 2021, 19 patients suffered a tricuspid valve adverse event, including damage to the leaflets, papillary muscle, or chordae tendineae (n=14; 74%); interference with valve closure (n=3; 16%); and 2 LPMs were irretrievably wedged in the tricuspid valve apparatus. Damaged valves included: 1) torn leaflet or chordal tissue found in the delivery system (n=6) after complicated or failed LPM recapture that necessitated removal without the LPM retracted into the delivery system; all patients developed tricuspid regurgitation, and one patient died. 2) valve damage by the delivery system either directly (n=6) or during LPM recapture (n=1) or removal by a snare (n=1); all patients had new or worsening tricuspid regurgitation; one patient died, 2 had valve repair, and one valve was replaced. In three patients the LPM removal, and one was treated medically. Of the 2 LPMs wedged in the tricuspid valve apparatus, one required surgical removal and one was abandoned.

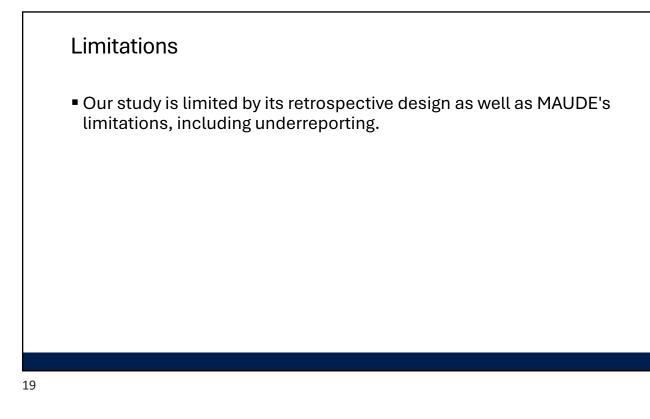


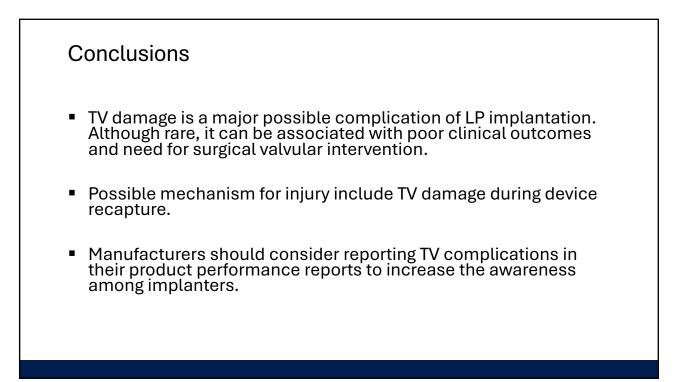


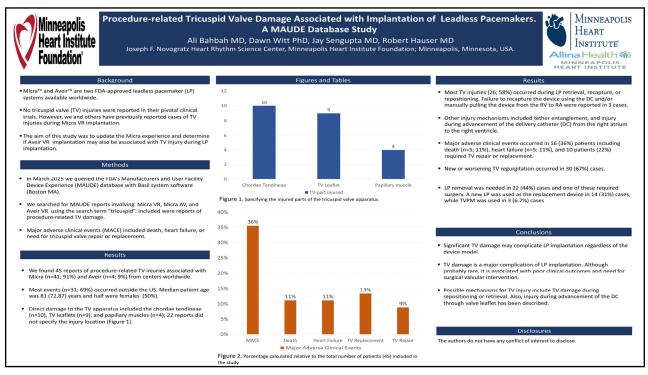


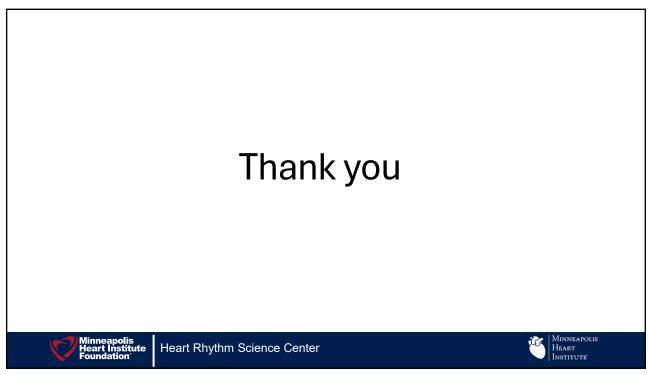


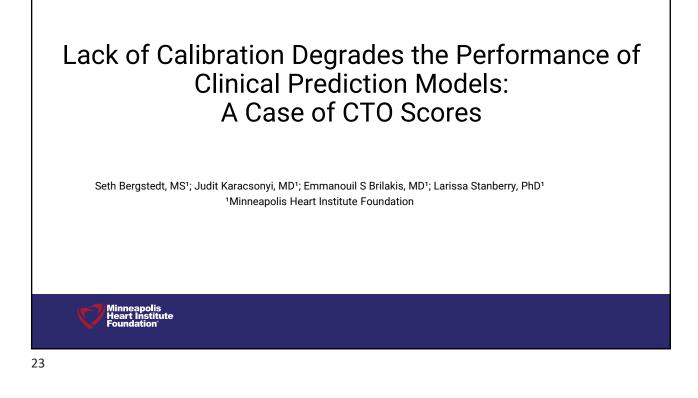


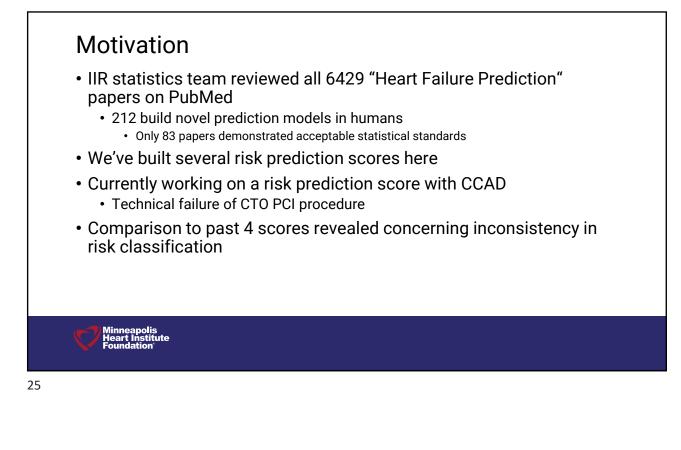


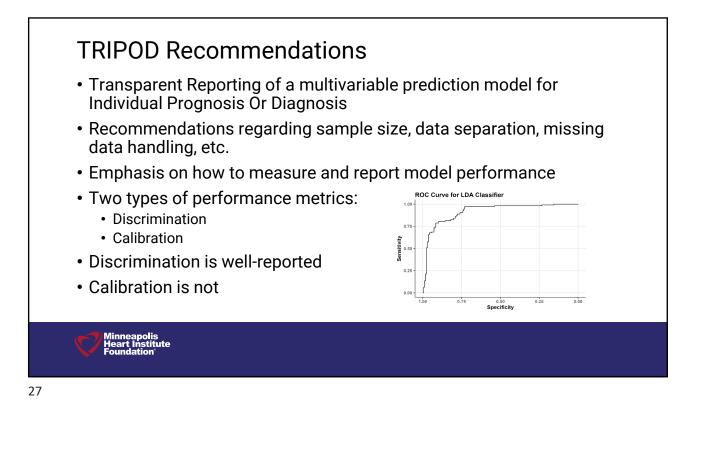


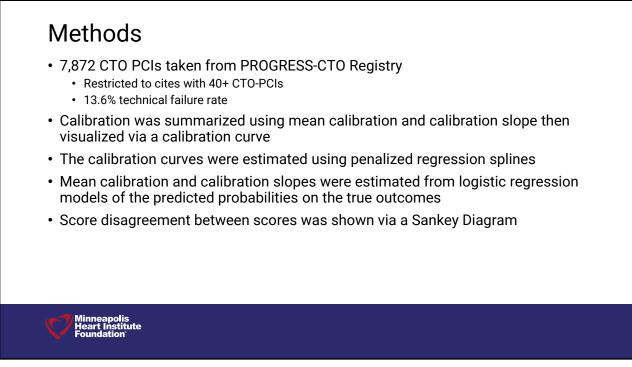


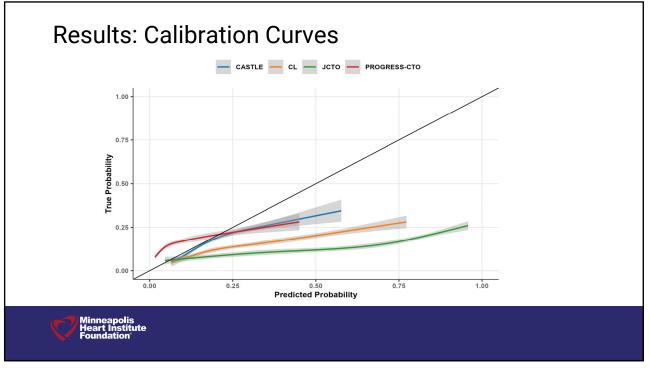




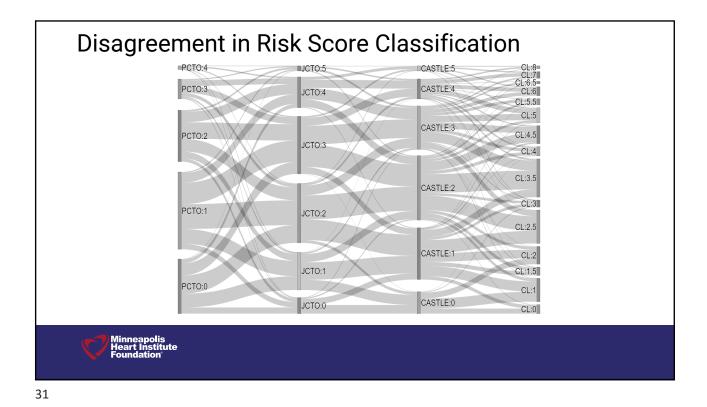

MHIF Cardiovascular Grand Rounds | March 24, 2025


Risk Score


- What is a risk score?
 - An equation/algorithm that transforms patient information into the probability of experiencing an event of interest


• How is it helpful?

- · Helps physicians make decisions
 - Should this patient stay in the hospital?
 - Which procedure should be used for the given patient? More or less invasive?
- What makes a risk score better or worse?
- How does one develop a better risk score?
 - TRIPOD Statement provides guidance

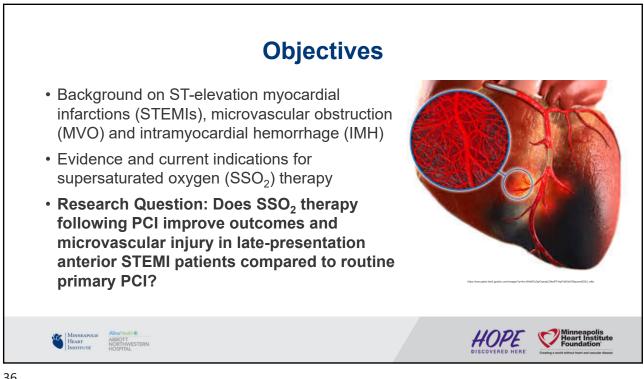


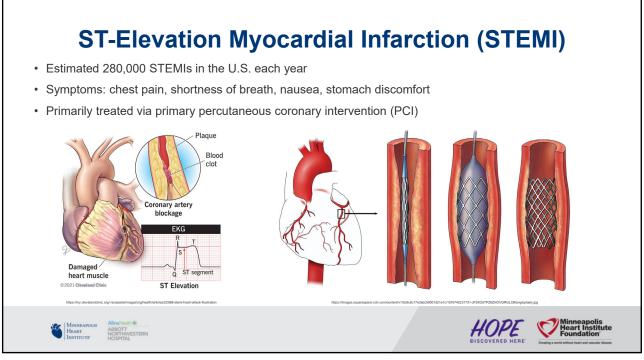
Score	AUC (Ideal=1)	Mean Calibration (Ideal=0)	Calibration Slope (Ideal=1)
PROGRESS-CTO	0.61 (0.59, 0.62)	-0.06 (-0.06, -0.05)	0.39 (0.33, 0.49)
Ј-СТО	0.63: (0.61, 0.65)	0.38 (0.37, 0.39)	0.31 (0.27, 0.36)
CL	0.63: (0.61, 0.64)	0.14 (0.13, 0.15)	0.49 (0.42, 0.56)
CASTLE	0.65: (0.64, 0.67)	0.02 (0.01, 0.03)	0.89 (0.78, 0.99)
Minneapolis Heart Institu Foundation	ute		

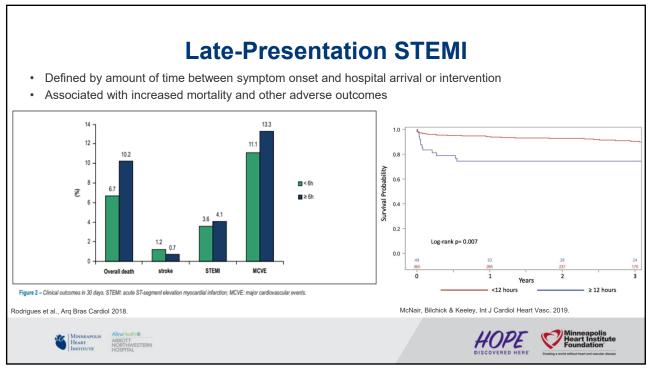
<section-header><section-header><list-item><list-item><list-item><list-item>

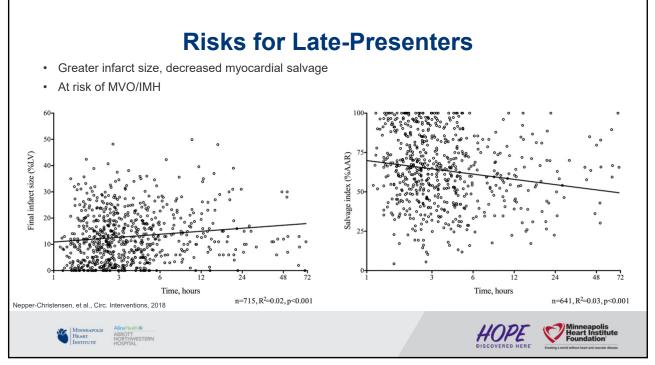
References

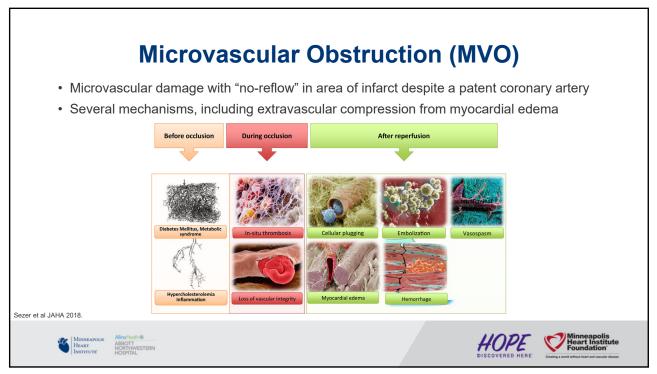
1. Collins GS, Dhiman P, Ma J, et al. Evaluation of clinical prediction models: from development to external validation. BMJ 2024.

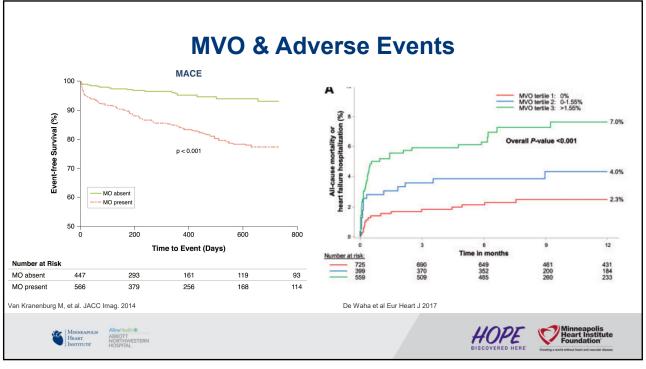

2. Simsek B, Kostantinis S, Karacsonyi J, Brilakis ES. Scores for Chronic Total Occlusion Percutaneous Coronary Intervention: A Window to the Future? Journal of the American Heart Association 2022.

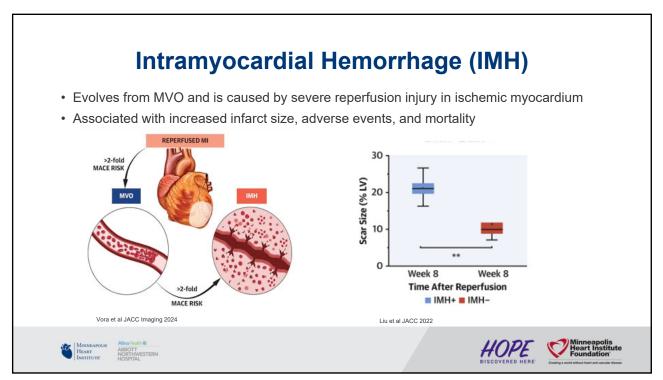

3. Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 2015.

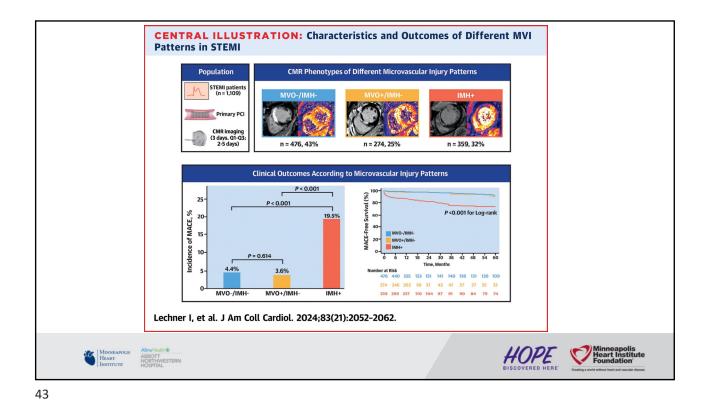


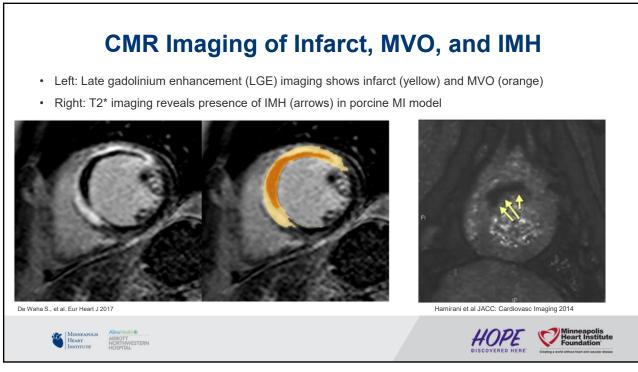


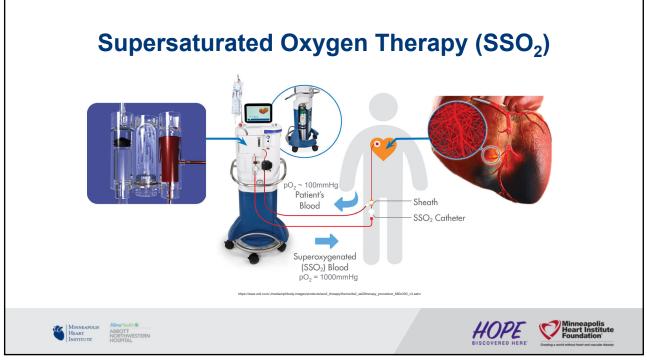


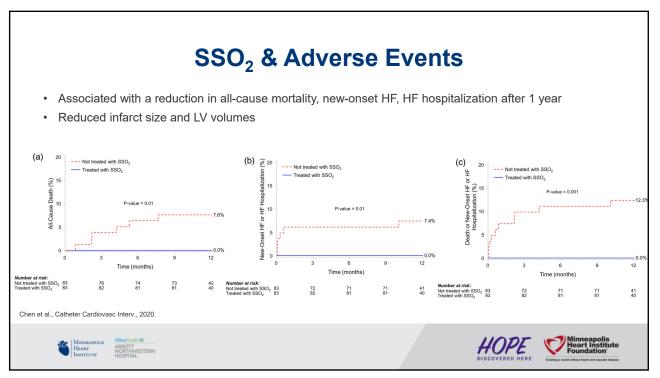


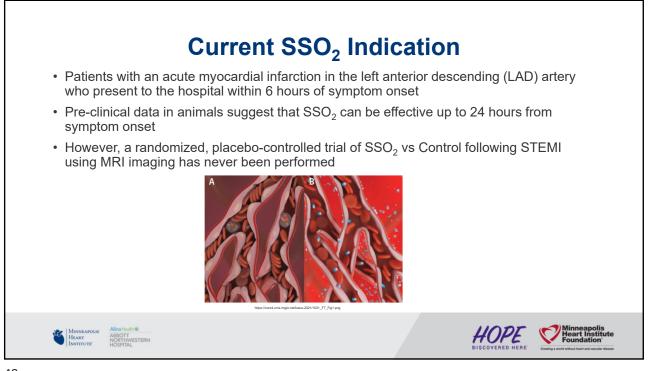


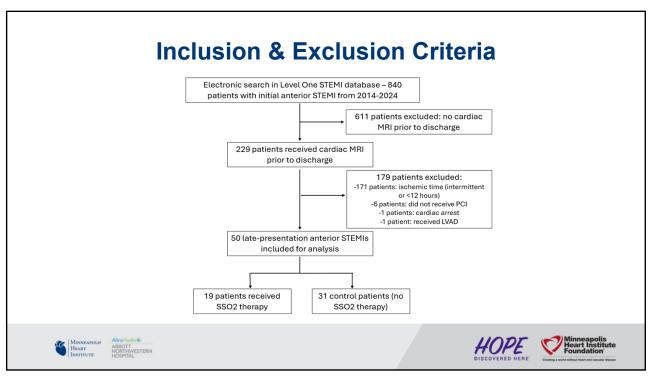




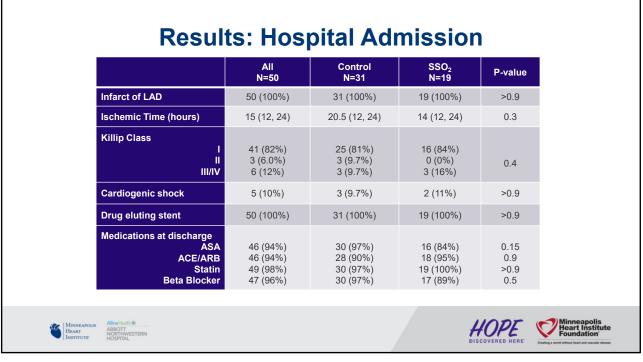








	N= 874	4 Patients Q	Qualified For Analy	ysis		
N = 90 in Treatmer IC-HOT and S			N = 784 Patient 7 Compara		Untreated Gro	oup
Independent pred	dictors of the extent o		MVO in Patients	Treated with S	SO2 and Contro	ol Group
	Coefficient	Adjusted		SSO2 group	Control Group	Unadjusted P
Covariate	[95% CI]	P value	Characteristic	(N=90)	(N=784)	value
			Time to MVO			
SSO2 (vs. no SSO2)	[95% CI]	P value		(N=90)	(N=784)	value
Covariate SSO2 (vs. no SSO2) Age (per 5 years) Sex (male vs. female)	[95% CI] -1.35 [-2.58, -0.11]	P value	Time to MVO assessment (days) Extent of MVO (grams)	(N=90) 3.8 ± 1.2 0.3 [0.0, 3.4]	(N=784) 3.6 ± 1.5 1.1 [0.0, 5.2]	value 0.23 0.049
SSO ₂ (vs. no SSO ₂) Age (per 5 years)	[95% CI] -1.35 [-2.58, -0.11] -0.16 [-0.31, 0.00]	P value 0.03 0.054	Time to MVO assessment (days)	(N=90) 3.8 ± 1.2	(N=784) 3.6 ± 1.5	value 0.23

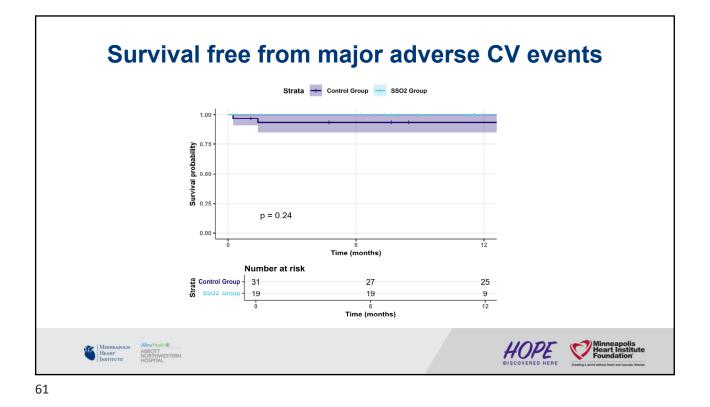


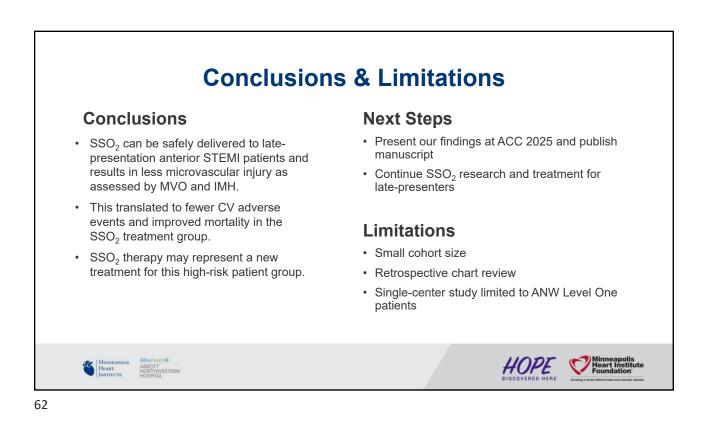
	All N=50	Control N=31	SSO₂ N=19	P-value
\ge	60 (52, 73)	59 (50, 78)	60 (52, 66)	0.7
/lale	31 (62%)	19 (61%)	12 (63%)	0.9
змі	29.5 (25.6, 33.1)	27.9 (24.6, 31.8)	32.0 (27.4, 40.4)	0.005
White	43 (88%)	27 (90%)	16 (84%)	0.3
Hypertension	20 (40%)	12 (39%)	8 (42%)	0.8
)iabetes mellitus	16 (32%)	10 (32%)	6 (32%)	>0.9
Dyslipidemia	28 (58%)	13 (45%)	15 (79%)	0.019
Smoking Current Former	13 (27%) 10 (20%)	9 (30%) 8 (27%)	4 (21%) 2 (11%)	0.2
listory of CAD	3 (6.0%)	1 (3.2%)	2 (11%)	0.5
amily history of CAD	10 (22%)	8 (31%)	2 (11%)	0.2

	All N=50	Control N=31	SSO₂ N=19	P-value
Age	60 (52, 73)	59 (50, 78)	60 (52, 66)	0.7
Male	31 (62%)	19 (61%)	12 (63%)	0.9
ВМІ	29.5 (25.6, 33.1)	27.9 (24.6, 31.8)	32.0 (27.4, 40.4)	0.005
White	43 (88%)	27 (90%)	16 (84%)	0.3
Hypertension	20 (40%)	12 (39%)	8 (42%)	0.8
Diabetes mellitus	16 (32%)	10 (32%)	6 (32%)	>0.9
Dyslipidemia	28 (58%)	13 (45%)	15 (79%)	0.019
Smoking Current Former	13 (27%) 10 (20%)	9 (30%) 8 (27%)	4 (21%) 2 (11%)	0.2
History of CAD	3 (6.0%)	1 (3.2%)	2 (11%)	0.5
Family history of CAD	10 (22%)	8 (31%)	2 (11%)	0.2

	All N=50	Control N=31	SSO ₂ N=19	P-value
nitial Diameter Stenosis (%)	100 (99,100)	100 (99,100)	100 (100,100)	0.2
nitial TIMI Flow 0/1 2 3	38 (81%) 9 (19%) 0 (0%)	22 (76%) 7 (24%) 0 (0%)	16 (89%) 2 (11%) 0 (0%)	0.4
Final Diameter Stenosis (%)	0 (0,0)	0 (0,0)	0 (0,0)	>0.9
Final TIMI Flow 0/1 2 3	0 (0%) 7 (15%) 40 (85%)	0 (0%) 4 (14%) 25 (86%)	0 (0%) 3 (17%) 15 (83%)	>0.9
Procedure Time (min)	77 (30, 114)	34 (25, 54)	122 (114, 150)	<0.001
Thrombectomy	10 (20%)	8 (26%)	2 (11%)	0.3
Intra-aortic Balloon Pump Placement	7 (14%)	4 (13%)	3 (16%)	>0.9
Post-PCI ST-segment Elevation (mm)	1.33 (0.67, 1.67)	1.33 (1.00, 1.67)	0.92 (0.67, 1.33)	0.018

	All N=50	Control N=31	SSO ₂ N=19	P-value
nitial Diameter Stenosis (%)	100 (99,100)	100 (99,100)	100 (100,100)	0.2
Initial TIMI Flow 0/1 2 3	38 (81%) 9 (19%) 0 (0%)	22 (76%) 7 (24%) 0 (0%)	16 (89%) 2 (11%) 0 (0%)	0.4
Final Diameter Stenosis (%)	0 (0,0)	0 (0,0)	0 (0,0)	>0.9
Final TIMI Flow 0/1 2 3	0 (0%) 7 (15%) 40 (85%)	0 (0%) 4 (14%) 25 (86%)	0 (0%) 3 (17%) 15 (83%)	>0.9
Procedure Time (min)	77 (30, 114)	34 (25, 54)	122 (114, 150)	<0.001
Thrombectomy	10 (20%)	8 (26%)	2 (11%)	0.3
Intra-aortic Balloon Pump Placement	7 (14%)	4 (13%)	3 (16%)	>0.9
Post-PCI ST-segment Elevation (mm)	1.33 (0.67, 1.67)	1.33 (1.00, 1.67)	0.92 (0.67, 1.33)	0.018

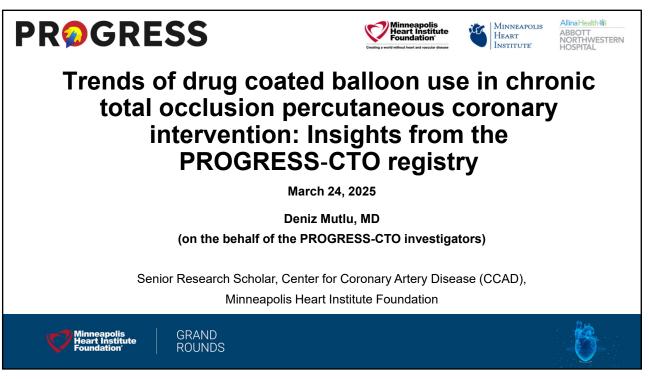

	All N=50	Control N=31	SSO ₂ N=19	P-value
Baseline LVEF (%)	33 (33, 48)	33 (31, 44)	33 (33, 48)	0.50
ollow-Up LVEF (%)	43 (33, 53)	46 (33, 62)	44 (33, 53)	0.75
LVEDV (ml)	170 (142, 214)	159 (125, 216)	174 (155, 204)	0.3
LVESV (ml)	102 (72, 122)	91 (66, 122)	108 (84, 123)	0.3
LV Mass (g)	139 (115, 175)	133 (107, 177)	155 (118, 175)	0.4
Infarct Size (% of LV mass)	34 (25, 41)	34 (25, 41)	34 (24, 43)	>0.9
Presence of MVO	43 (91%)	31 (100%)	12 (75%)	0.010
MVO (% of LV Mass)	12 (9, 18)	12 (9, 19)	12 (3, 17)	0.3
Presence of IMH	26 (87%)	14 (100%)	12 (75%)	0.10


	All N=50	Control N=31	SSO ₂ N=19	P-value
aseline LVEF (%)	33 (33, 48)	33 (31, 44)	33 (33, 48)	0.50
ollow-Up LVEF (%)	43 (33, 53)	46 (33, 62)	44 (33, 53)	0.75
LVEDV (ml)	170 (142, 214)	159 (125, 216)	174 (155, 204)	0.3
LVESV (ml)	102 (72, 122)	91 (66, 122)	108 (84, 123)	0.3
LV Mass (g)	139 (115, 175)	133 (107, 177)	155 (118, 175)	0.4
Infarct Size (% of LV mass)	34 (25, 41)	34 (25, 41)	34 (24, 43)	>0.9
Presence of MVO	43 (91%)	31 (100%)	12 (75%)	0.010
MVO (% of LV Mass)	12 (9, 18)	12 (9, 19)	12 (3, 17)	0.3
Presence of IMH	26 (87%)	14 (100%)	12 (75%)	0.10

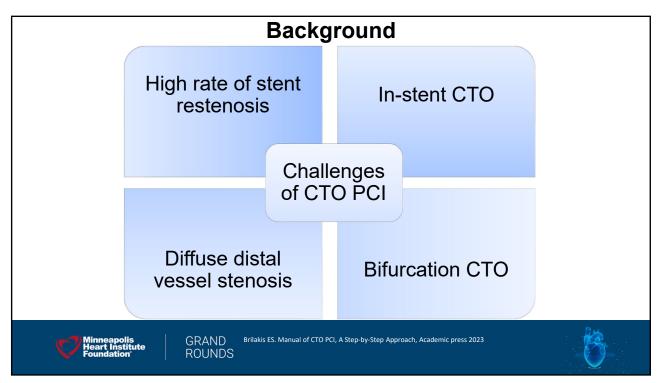
	All N=50	Control N=31	SSO ₂ N=19	P-value
eath	7 (14%)	7 (23%)	0 (0%)	0.035
Reinfarction	3 (6.0%)	3 (9.7%)	0 (0%)	0.3
Stroke	2 (4.0%)	2 (6.5%)	0 (0%)	0.5
Cardiac Rehospitalization	20 (40%)	15 (48%)	5 (26%)	0.12
Revascularization	4 (8.0%)	4 (13%)	0 (0%)	0.3
MACE	6 (12%)	6 (19%)	0 (0%)	0.071

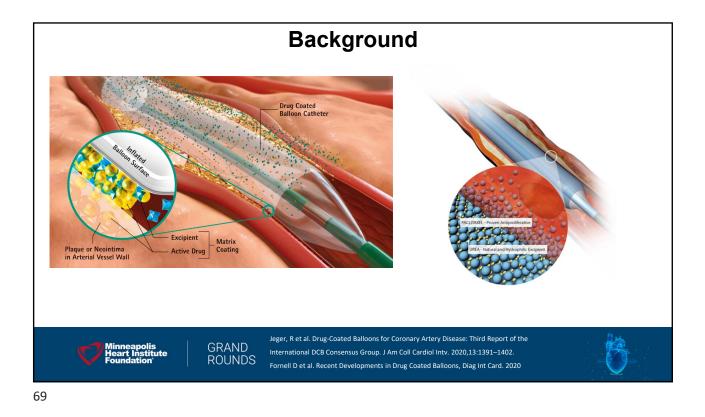
	All N=50	Control N=31	SSO ₂ N=19	P-value
Death	7 (14%)	7 (23%)	0 (0%)	0.035
Reinfarction	3 (6.0%)	3 (9.7%)	0 (0%)	0.3
Stroke	2 (4.0%)	2 (6.5%)	0 (0%)	0.5
Cardiac Rehospitalization	20 (40%)	15 (48%)	5 (26%)	0.12
Revascularization	4 (8.0%)	4 (13%)	0 (0%)	0.3
MACE	6 (12%)	6 (19%)	0 (0%)	0.071

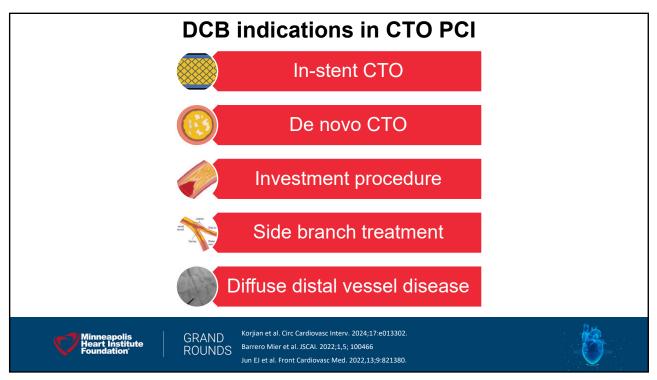
	All N=50	Control N=31	SSO ₂ N=19	P-value
eath	7 (14%)	7 (23%)	0 (0%)	0.035
einfarction	3 (6.0%)	3 (9.7%)	0 (0%)	0.3
Stroke	2 (4.0%)	2 (6.5%)	0 (0%)	0.5
Cardiac Rehospitalization	20 (40%)	15 (48%)	5 (26%)	0.12
Revascularization	4 (8.0%)	4 (13%)	0 (0%)	0.3
MACE	6 (12%)	6 (19%)	0 (0%)	0.071

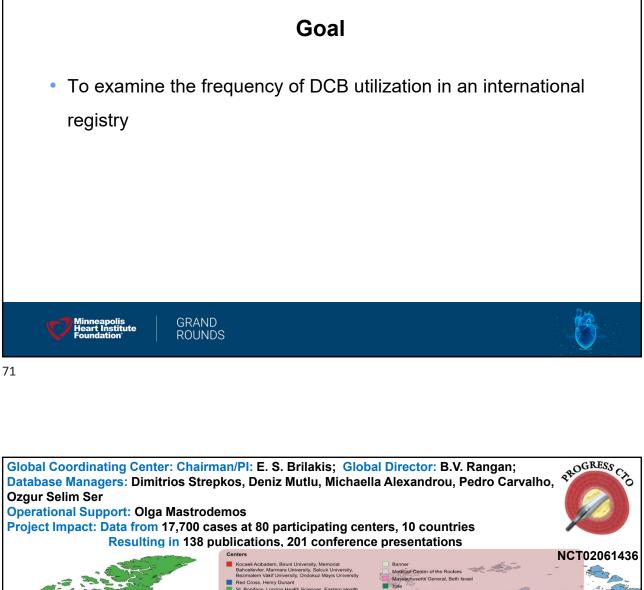


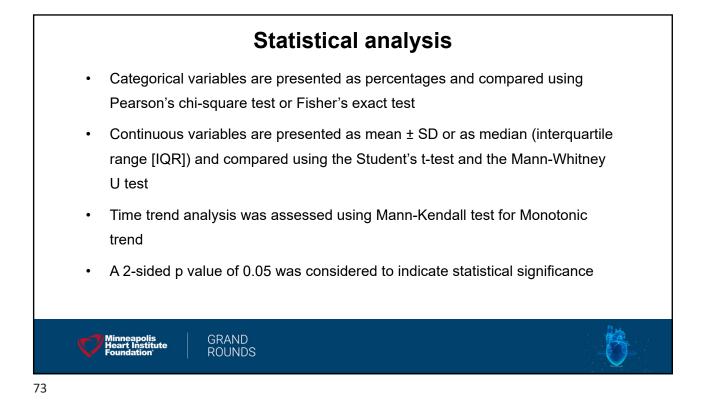


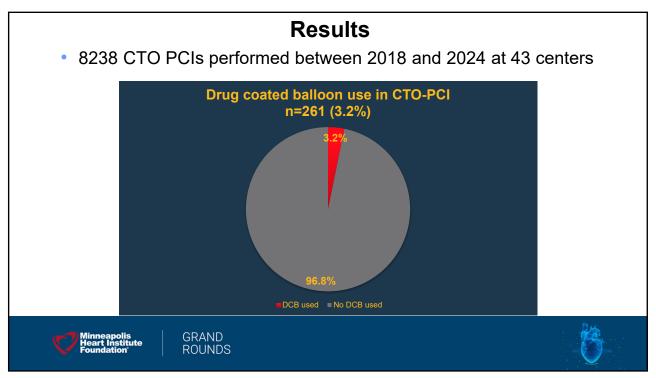

		Funding: Clinical Research Internship & Allina Health	
	Dr. Jay Traverse	internship & Anna Health	
neapolic and the second s	Sarah Schwager	Internship Program Coordinate	
6	Katianna Feldewerd	Maia Hendel	
	Dr. João Cavalcante	Dr. David Hurrell	
	Stephanie Schmidt	Ross Garberich	
A. 17 6	Michelle M. Campbell	John Rickert	
		Dr. Scott Sharkey	
14- 1- 1-	Scientific Services	Lisa Tindell	
	Seth Bergstedt	Jenni Wagner	
	Andrew Willett		
ABOR	Dr. Larissa Stanberry	MHI/MHIF Team	

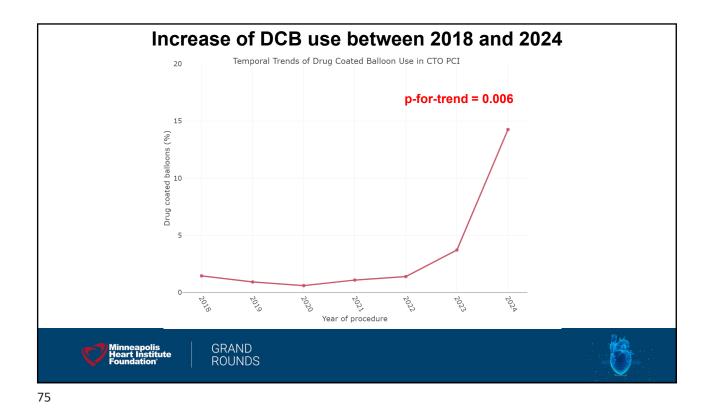

References Cleveland Clinic. (n. 4). What is a Sterni heart attack? Cleveland Clinic. <u>https://mv.clevelandclinic.org/health/diseaset/2008.sterni-heart-attack</u> de Waha, S., Patel, M. R., Granger, C. B., Ohman, E. M., Maehara, A., Ettel, I., Ben-Yehuda, O., Jenkims, P., Thele, H., & Stone, G. W. (2017). Relationship between microvascular obstruction and adverse events following <u>prints index controls and adverse events</u> following <u>prints index controls and adverse events</u> following <u>prints index controls</u>. *J. (2017)*. Relationship between microvascular obstruction and adverse events following <u>prints index controls</u>. *J. (2010)*. *J* J. (2024). Clinical Outcomes Associated With Various Microvascular Injury Patterns Identified by CMR After STEML Journal of the American College of Cardiology, 83(21), 2052–2062. https://doi.org/10.1016/j.lecs.2024.03.686 Supersaturated Oxygen Therapy, 2OLL Medical. (n.d.). https://www.zoll.com/products/supersaturated-oxygen-Iherapy Stone, G. W., Martin, J. L., de Boer, M., J., Marghen, M., Brancucci, E., Blankenship, J.-C., Metzger, D. C., Gibbons, R. J., Lindsay, B. S., Weiner, B. H., Lansky, A. J., Krucoff, M. W., Fahy, M., & Boscardin, W.J. (2009). Effect of supersaturated Oxygen delivery on infarct size after percutaneous coronary intervention in acute myccardial infarction. *Circulation: Cardiovascular Interventions*, 25(), 565–375. https://doi.org/10.1161/j.icrenterventions.108.4000; A. B. (2004). Hiteration of Information and American Cardiovascular Interventions (2005). Body Status Stat . . Supersaturated oxygen unerapy in acute antenton impocance memory interview. The total concerner and the society for acute antenton impocance memory interview. The total concerner and the society for acute antenton impocance memory interview. The total concerner and the society for active antenton impocance memory interview. The total concerner and the society for active antenton in patients with anterior STEMI treated with supersaturated oxygen. Juna difference and the society for active active antegraphysical interview. The total concerner and the society for active antenner antenner interview. The total concerner and the society for active active antegraphysical interview. The total concerner and the society for active active antegraphysical interview. The total concerner and the society for active active antegraphysical interview. The total concerner and the society for active active antegraphysical interview. The total concerner and the society for active active antegraphysical interview. The total concerner and the society for active active antegraphysical interview. The total concerner and the society for active active antegraphysical interview. The total concerner and the society for active active antegraphysical interview. The total concerner and the society for active active antegraphysical interview. The total concerner and the society for active antegraphysical interview. The total concerner and the society for active antegraphysical interview. The total concerner and the society for active antegraphysical interview. The total concerner and the society for antegraphysical interview. The total concerner and the society for active antegraphysical interview. The total concerner and the society for active antegraphysical interview. The total concerner and the society for active antegraphysical interview. The total concerner and the society for active antegraphysical interview. The total concerner and the society for active antegraphysical interview. The total concerence and the society for active antegra . Dharmakumar, R. (2022). Intramyocardial Hemorrhage and the "Wave Front" of Reperfusion Injury Compromising Myocardial Salvage. *Journal of the American College of Cardiology*, 79(1), 35–48. <u>https://doi.org/10.1016/j.acc.2021.10.034</u> Traverse, J. (2023). The Influence of Myocardial Edema on MVO During ST-Elevation MI. Lecture prevale at Cardiovascular Grand Rounds, Minneapolis, MN. Nepper-Christensen, L., Lenborg, J., Hofsten, D. E., Ahtarovski, K. A., Bang, L. E., Helqvist, S., Kyhl, K., Kober, L., Kelbask, H., Vojstrup, N., Hoimvang, L., & Engstrem, T. (2018). Benefit from reperfusion with primary perculaneous coronary intervention beyond 12 hours of symptom duration in patients with st-segment-devation myocardial infanction. *Circulation: Cardiovascular Interventions*, 17(9). <u>Hamitani, Y. S., Wong, A., Kinano, C. M., & Salamo, M. (2014). Effect of microvascular obstruction and Intramyocardial hemorrhage by CMR on LV remodeling and outcomes after myocardial infanction: a systematic review and mela-analysis. *JACC. Cardiovascular imaging*, 7(9), 940–952. <u>https://doi.org/10.1018/j.cmg.2014.06.012</u></u> • HOPE V Heart Institute Foundation MINNEAPOLIS HEART INSTITUTE HORTHWESTERN 64









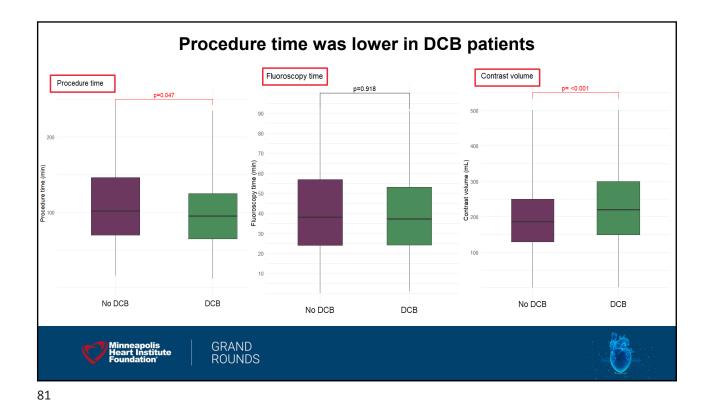


Patients with DCB had less comorbidities			
Variable	DCB used (n=257)	No DCB used (n=7969)	P value
Age	61 ± 12	64 ± 10	<0.001
Male gender	81.6%	80.0%	0.585
Diabetes mellitus	43.9%	51.6%	0.018
Hypertension	75.8%	85.8%	<0.001
LVEF (%)	51.5 ± 10.4	50.6 ± 12.4	0.267
Prior heart failure	13.2%	26.5%	<0.001
Prior MI	38.9%	41.8%	0.410
Prior CABG	17.5%	24.6%	0.013
Cerebrovascular disease	4.9%	9.2%	0.025
Peripheral arterial disease	5.3%	13.1%	<0.001

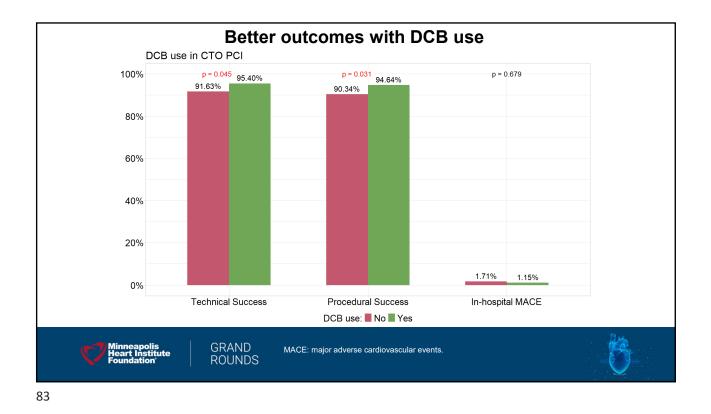
Minneapolis Heart Institute Foundation GRAND ROUNDS CABG: coronary artery bypass grafting; DCB: drug coated balloon; LVEF: left ventricular ejection fraction; MI: myocardial infarction; PCI: percutaneous coronary intervention.

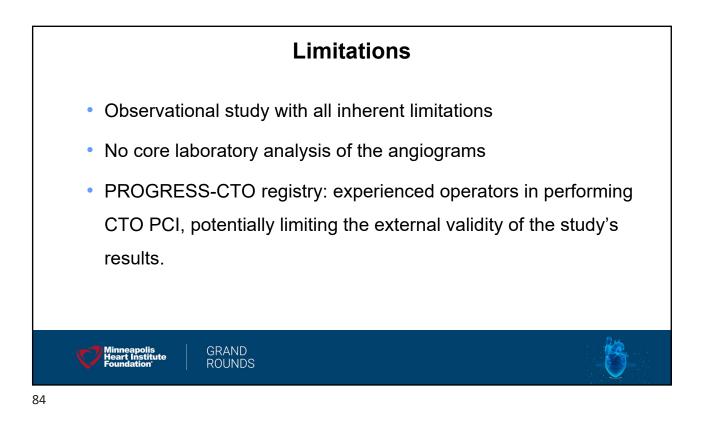
Intravascular imaging was used more frequently in patients with DCB used			vith DCB
Variable	DCB used (n=257)	No DCB used (n=7969)	P value
CAD presentation			<0.001
Stable angina	74.8%	67.4%	
Unstable angina	8.7%	15.5%	
NSTEMI	2.4%	7.2%	
STEMI	0.8%	1.2%	
Baseline creatinine (mg/dl)	0.95 (0.80-1.09)	1.00 (0.80-1.20)	0.001
ntravascular imaging	58.9%	50.0%	0.006
Minneapolis Heart Institute Foundation	GRAND	B: drug coated balloon; NSTEMI: Non-ST segment EMI: ST segment elevation myocardial infarction.	-6-

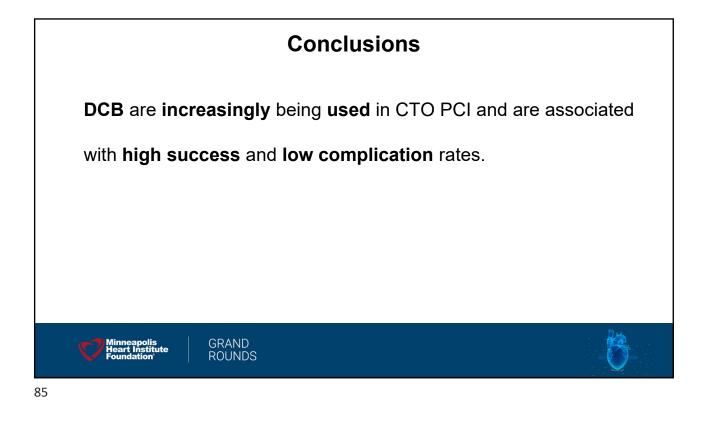
Complex lesion characteristics were less common in the DCB patients			
Variable	DCB us (n=261		ed P value
CTO Target vessel	47.5%	•=-=	0.231
LAD LCX	32.2% 17.3%	18.4%	
Other Vessel diameter (mm) Occlusion length (mm)	3.1% 3.0 ± 0 31.3 ± 1	.5 3.1 ± 0.6	0.001
Proximal cap ambiguity Blunt/no stump	26.7% 43.2%	33.3% 50.1%	0.037 0.034
Calcification (moderate/set Tortuosity (moderate/set		25.6%	0.066
J-CTO score PROGRESS-CTO score	1.1 ± 0	.9 1.2 ± 1.0	0.007 0.339
Minneapolis Heart Institute Foundation	GRAND ROUNDS circumflex; PROG	occlusion; J: Japan; LAD: left anterior descending; LCX: le RESS-CTO: prospective global registry for the study of chi tion; RCA: right coronary artery.	


Variable	DCB used (n=261)	No DCB used (n=7981)	P value
First crossing strategy			0.150
Antegrade wiring	90.4%	85.7%	
ADR	1.9%	2.0%	
Retrograde	7.4%	11.1%	
Retrograde strategy used	22.6%	28.6%	0.040
ADR strategy used	12.3%	16.4%	0.089
Successful strategy			0.005
Antegrade wiring	70.7%	61.6%	0.005
ADR	7.7%	11.5%	
Retrograde	17.8%	18.5%	
None	3.9%	8.5%	
Minneapolis Heart Institute Foundation	GRAND ADR: antegrade dissection and re-entry. ROUNDS		-65-

ISR CTO were more frequent in DCB patients			
Variable	DCB used (n=261)	No DCB used (n=7981)	P value
Balloon uncrossable lesion	5.5%	8.3%	0.135
Balloon undilatable lesion	4.7%	5.8%	0.582
ISR CTO	42.9%	15.6%	<0.001
Number of stent used	1.6 ± 0.8	2.2 ± 1.0	<0.001
Procedure time (min)	99 (66-131)	106 (72-154)	0.047
Contrast volume (ml)	222 (150-300)	190 (130-265)	<0.001
Fluoroscopy time (min)	40 (25-60)	40 (25-62)	0.918
			D.M.




 $\ensuremath{\mathsf{GRAND}}$ CTO: chronic total occlusion; DCB: drug coated balloon; ISR: in-stent restenosis. ROUNDS

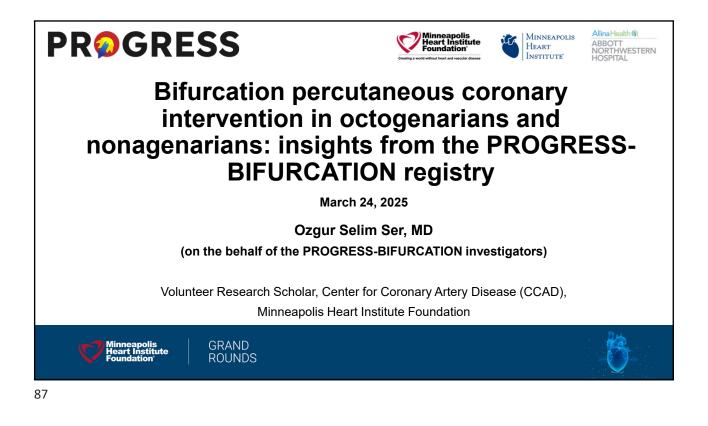


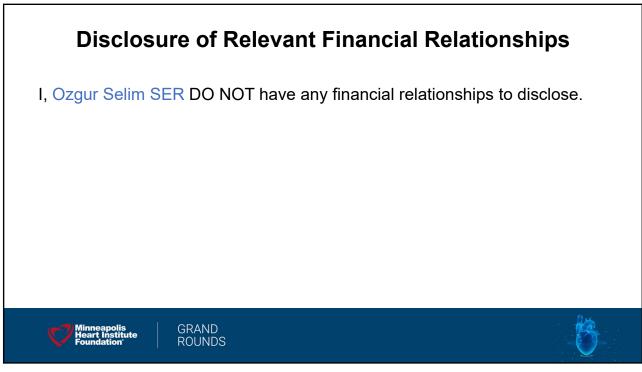
	DCB used	
/ariable	(n=261)	DCB coating type
umber of DCB used	1.3 ± 0.6	DCB coaling type
CB diameter, mm	3.3 ± 2.1	
DCB length, mm	33.5 ± 15.8	8.0%
DCB strategy		
Only DCB	53.7%	
Hybrid (DCB+ DES)	46.3%	
leason for DCB use		
In-stent CTO	42.9%	
Investment procedure	30.7%	
Side branch treatment	13.7%	92.0%
Diffuse distal vessel		
disease	9.8%	Paclitaxel coated Sirolimus of American S
ail-out stenting required	2.9%	

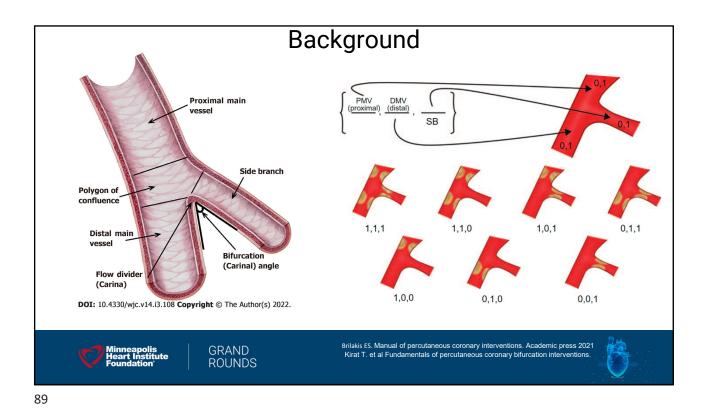
Thank you!

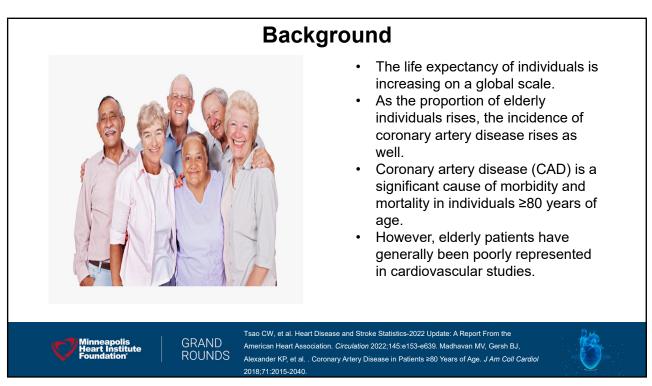
Mutlu D, Alexandrou M, Strepkos D, Carvalho PEP, Ser OS, Goktekin O, Jaffer FA, Frizzel J, Elbarouni B, Khatri JJ, Alaswad K, Davies R, Ozdemir R, Uluganyan M, Elguindy A, Ahmed Y, Choi JW, Young L, Basir M, Raj L, Azzalini L, Ybarra L, Riley R, Murad B,, Mastrodemos OC, Rangan BV, Sandoval Y, Burke MN, Gorgulu S, Brilakis ES.

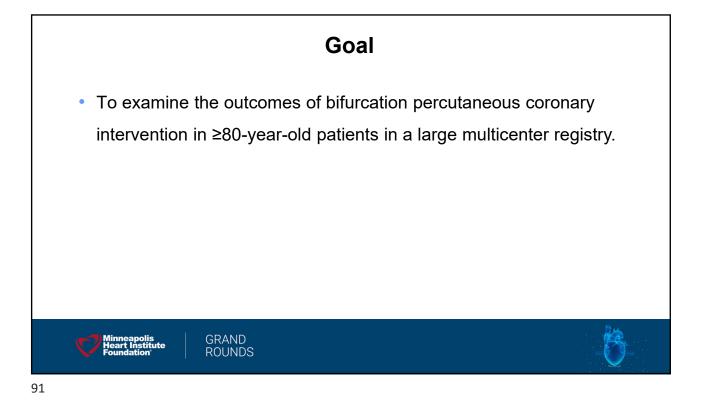
Acknowledgments

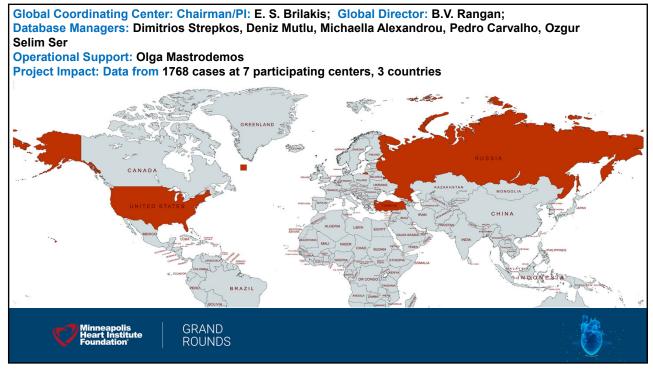

The authors are grateful for the philanthropic support of our generous anonymous donors(2), and the philanthropic support of Drs. Mary Ann and Donald A Sens; Mr. Raymond Ames and Ms. Barbara Thorndike; Frank J and Eleanor A. Maslowski Charitable Trust; Joseph F and Mary M Fleischhacker Family Foundation; Mrs. Diane and Dr. Cline Hickok; Mrs. Marilyn and Mr. William Ryerse; Mr. Greg and Mrs. Rhoda Olsen; Mrs. Wilma and Mr. Dale Johnson; Mrs. Charlotte and Mr. Jerry Golinvaux Family Fund; the Roehl Family Foundation; the Joseph Durda Foundation.

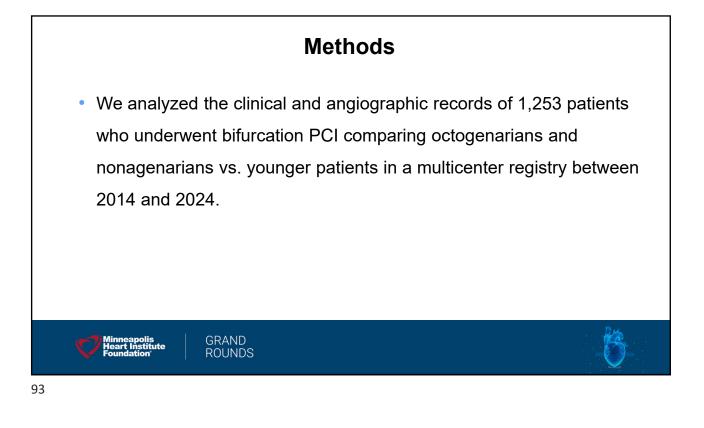

Minneapolis Heart Institute Foundation GRAND ROUNDS

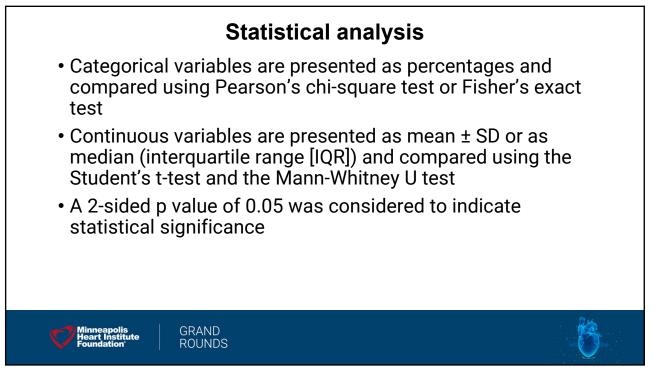

Deniz Mutlu, MD deniz.mutlu92@gmail.com X: @dnzmtlu

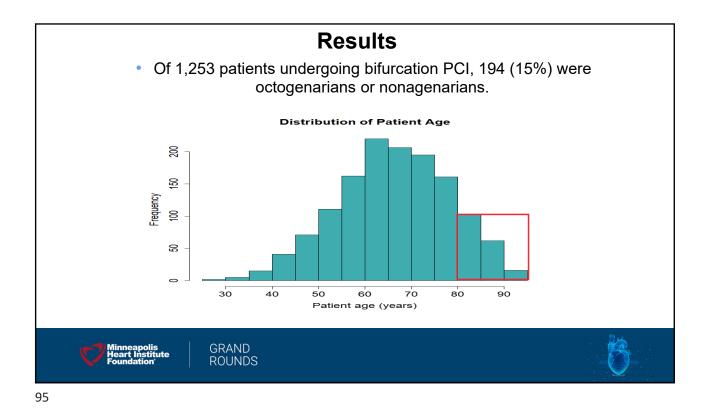








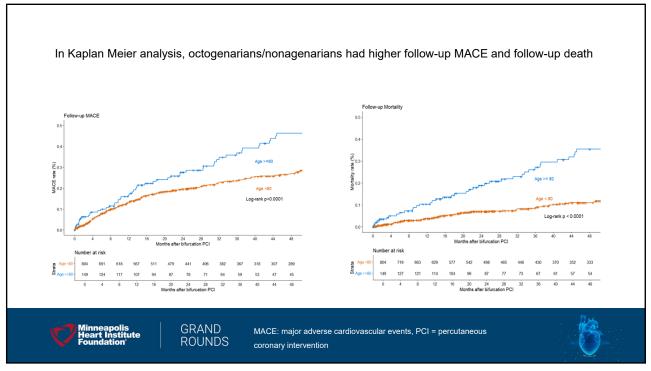




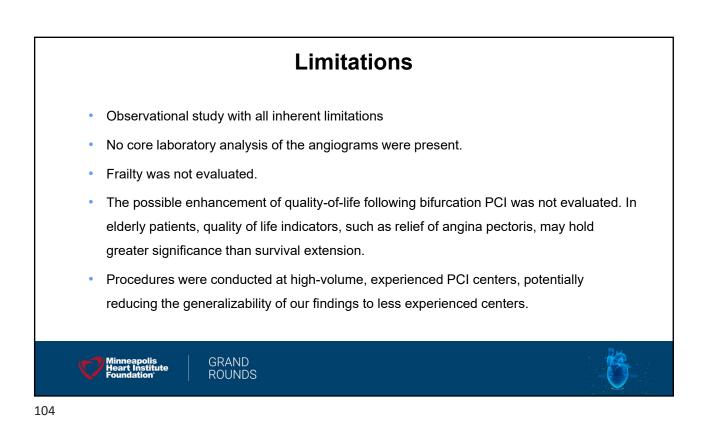
Octogenarians/nonagenarians had more comorbidities			
Variables	<80-years-old (n = 1060)	≥80-years-old (n = 193)	p-value
Age (years)	63.44 ± 9.82	84.32 ± 3.66	<0.001
Gender, male	75.8% (803)	66.8% (129)	0.009
BMI	30.70 ± 6.23	28.39 ± 5.58	<0.001
Hypertension	76.5% (811)	90.7% (175)	<0.001
Dyslipidemia	76.9% (815)	85.0% (164)	0.012
Smoking, current	22.8% (242)	1.0% (2)	<0.001
Diabetes mellitus	35.0% (371)	37.3% (72)	0.544
Left ventricular ejection fraction (%)	53.95 ± 12.68	52.21 ± 13.88	0.122
Family history of CAD	20.5% (210)	12.6% (24)	0.011
Heart failure	19.0% (201)	39.4% (76)	<0.001
Cerebrovascular disease	10.0% (106)	22.3% (43)	<0.001
Atrial fibrillation	11.8% (122)	29.8% (57)	<0.001
Baseline creatinine (mg/dL)	0.97 [0.81, 1.13]	1.10 [0.89, 1.36]	<0.001

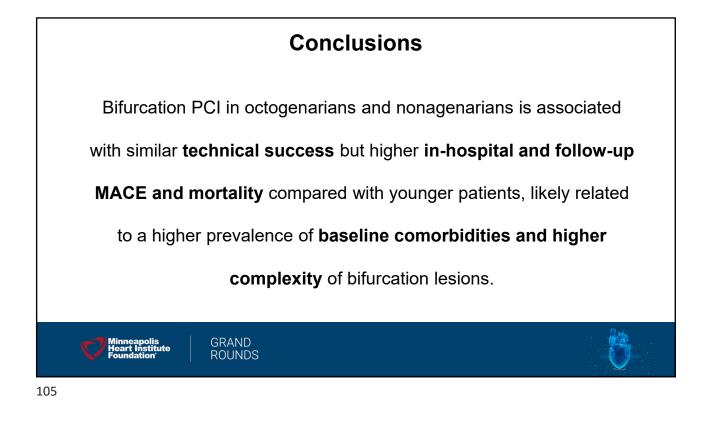
BMI = body mass index; CAD = coronary artery disease

Minneapolis Heart Institute Foundation GRAND ROUNDS


48.0% (325) 0.00 [0.00, 30.00] 0.00 [26.25, 90.00]	32.4% (36) 40.00 [10.00, 70.00]	0.002 <0.001
		<0.001
0.00 [26.25, 90.00]		
	80.00 [60.00, 90.00]	<0.001
8.2% (86)	14.1% (27)	0.009
		<0.001
22.8% (243)	45.6% (88)	
43.2% (460)	36.8% (71)	
15.3% (163)	5.2% (10)	
16.9% (180)	11.4% (22)	
1.7% (18)	1.0% (2)	
	22.8% (243) 43.2% (460) 15.3% (163) 16.9% (180) 1.7% (18)	22.8% (243) 45.6% (88) 43.2% (460) 36.8% (71) 15.3% (163) 5.2% (10) 16.9% (180) 11.4% (22) 1.7% (18) 1.0% (2)

Intravascular imaging was used more frequently in patients with octogenarians/nonagenarians			
Variables	<80-years-old (n = 1068)	≥80-years-old (n = 194)	p-value
Proximal main vessel diameter (mm)	3.50 [3.00, 4.00]	3.50 [3.25, 4.00]	<0.001
Proximal main vessel diameter stenosis (%)	70.00 [40.00, 90.00]	70.00 [50.00, 90.00]	0.643
Distal main vessel diameter (mm)	3.00 [2.75, 3.25]	3.00 [2.76, 3.50]	0.004
Distal main vessel diameter stenosis (%)	80.00 [60.00, 90.00]	87.50 [70.00, 90.00]	0.565
Side branch diameter (mm)	2.50 [2.25, 2.80]	2.50 [2.25, 3.00]	<0.001
Side branch diameter stenosis (%)	60.00 [20.00, 90.00]	80.00 [30.00, 90.00]	0.044
Pretreatment IVUS/OCT	19.7% (209)	25.9% (50)	0.049
Minneapolis Heart Institute Foundation	IVUS = Intravascular ultra GRAND ROUNDS	asound; OCT = Optical coherence tomography	-65-


Variables	<80-years-old (n = 1068)	≥80-years-old (n = 194)	p-value
Proximal main vessel tortuosity			0.041
Straight (< 70 degrees, 1 Bend)	54.4% (581)	64.4% (125)	
Slight (>70 degrees, 1 Bend)	25.7% (274)	20.6% (40)	
Moderate (2 Bends >70 degrees or 1 Bend >90 degrees)	15.4% (164)	9.8% (19)	
Severe (2 Bends >90 degrees or 1 Bend >120 degrees)	4.6% (49)	5.2% (10)	
Calcification			<0.001
None	35.6% (380)	10.3% (20)	
Mild (Spots)	31.1% (332)	21.6% (42)	
Moderate (<=50% Reference Lesion Diameter)	19.3% (206)	29.9% (58)	
Severe (>50% Reference Lesion Diameter)	14.0% (149)	38.1% (74)	
Medina classification			0.089
1,1,1	38.9% (415)	50.0% (97)	
1,1,0	20.1% (215)	18.0% (35)	
1,0,1	5.0% (53)	4.6% (9)	
0,1,1	11.3% (121)	9.3% (18)	
1,0,0	8.2% (88)	6.2% (12)	
0,1,0	12.5% (133)	7.2% (14)	
0,0,1	3.9% (42)	4.6% (9)	


Plaque modification was used more frequently in patients with				
octogenarians/nonagenarians				
Variables	<80-years-old (n = 1068)	≥80-years-old (n = 194)	p-value	
Side branch PTCA	32.9% (351)	47.9% (93)	<0.001	
Provisional to two-stent conversion	6.0% (64)	6.2% (12)	0.917	
Plaque modification use	39.0% (417)	53.1% (103)	<0.001	
Number of stents for main vessel	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.574	
Number of stents for side branch	1.00 (1.00, 1.00)	1.00 (1.00, 1.00)	0.445	
Reason for IVUS use			0.318	
Stent optimization	65.5% (165)	74.3% (52)		
Stent sizing	24.2% (61)	20.0% (14)		
To guide wiring	10.3% (26)	5.7% (4)		
Reason for OCT use			0.383	
Stent optimization	75.0% (18)	75.0% (3)		
Stent sizing	20.8% (5)	0.0% (0)		
To guide wiring	4.2% (1)	25.0% (1)		
Minneapolis Heart Institute Foundation	Heart Institute			

	<80-years-old	≥80-years-old	
Variables	(n = 1060)	(n = 193)	p-value
Procedural success	92.0% (975)	87.0% (168)	0.026
Technical success	95.0% (1,015)	93.3% (181)	0.317
Provisional stenting	68.2% (728)	57.2% (111)	0.003
Two-stent techniques	29.6% (316)	41.2% (80)	0.001
MACE	3.4% (36)	8.3% (16)	0.002
Death	1.0% (11)	3.1% (6)	0.035
Acute MI	1.4% (15)	3.1% (6)	0.119
Repeat PCI	1.2% (13)	2.1% (4)	0.316
Stroke	0.5% (5)	1.6% (3)	0.111
Emergency CABG	0.0% (0)	1.0% (2)	0.024
Bleeding	0.5% (5)	1.6% (3)	0.111
Side branch occlusion	0.1% (1)	0.0% (0)	>0.999
Contrast volume, ml	170.00 (130.00, 220.00)	150.00 (110.00, 200.00)	0.011
Fluoroscopy time	20.00 (12.90, 32.63)	23.50 (15.00, 35.10)	0.007
Air Kerma radiation dose (Gray)	1.39 (0.92, 2.12)	1.17 (0.77, 2.00)	0.015
Procedure time	75.00 (50.07, 117.40)	86.63 (60.00, 129.00)	0.006

Variables	Multivariate			
	HR	(95% CI)	р	
Octo- and nonagenarians	1.462	1.047-2.041	0.026	
Gender, male	0.834	0.628-1108	0.21	
Diabetes mellitus	1.619	1.228-2.134	0.001	
Hypertension	1.28	0.860-1.905	0.22	
Heart failure	1.362	1.01-1.838	0.043	
Chronic kidney Disease	1.495	1.097-2.036	0.011	
Prior PCI	1.652	1.257-2.170	0.001	
Proximal main vessel tortuosity	1.365	0.995-1.872	0.054	
Moderate/severe calcification	1.353	0.963-1.901	0.082	
LMCA lesion	1.511	1.043-2.19	0.029	
Two-stent techniques Minneapolis Heart Institute	0.931	0.690-1.258	0.64	

Thank you!

Ozgur Selim Ser, MD; Deniz Mutlu, MD; Michaella Alexandrou, MD; Dimitrios Strepkos, MD; Pedro E. P. Carvalho, MD; Oleg Krestyaninov, MD; Dimitri Khelimskii, MD; Barkin Kultursay, MD; Ali Karagoz, MD; Ufuk Yildirim, MD; Korhan Soylu, MD; Mahmut Uluganyan, MD; Olga Mastrodemos, BA; Bavana V. Rangan, BDS, MPH; Sandeep Jalli, DO; Konstantinos Voudris, MD, PhD; M. Nicholas Burke, MD; Yader Sandoval, MD; Emmanouil S. Brilakis, MD, PhD

Acknowledgments

The authors are grateful for the philanthropic support of our generous anonymous donors (2), and the philanthropic support of Drs. Mary Ann and Donald A Sens; Mrs. Diane and Dr. Cline Hickok; Mrs. Wilma and Mr. Dale Johnson; Mrs. Charlotte and Mr. Jerry Golinvaux Family Fund; the Roehl Family Foundation; the Joseph Durda Foundation; Ms. Marilyn and Mr. William Ryerse; Mr. Greg and Mrs. Rhoda Olsen. The generous gifts of these donors to the Minneapolis Heart Institute Foundation's Science Center for Coronary Artery Disease (CCAD) helped support this research project.

> GRAND ROUNDS

Minneapolis Heart Institute Foundation Ozgur Selim Ser, MD ozgurselimser@yahoo.com X: @ozgurselimser

www.progressbifurcation.org

