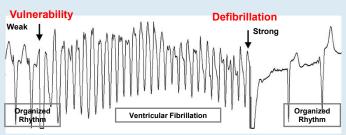


A Talk on What We Can Learn AboutHow to approach engineering/scientific challenges

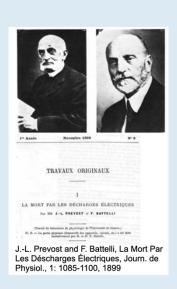
 How the history of defibrillation relates to broader trends in science, technology, and society

Confession


Total Newbie

Audience Participation

DC Shocks both induce and defibrillate VF


(Prevost & Battelli 1899)

- Electrodes in mouth & rectum of small intestine of animals.
- Induced and defibrillated VF with <u>capacitor-discharge</u> waveforms [induced 20-40 V, defibrillated 2000-6000 V, x 1-2 s].

Identified all 3 conditions for clinical defibrillation

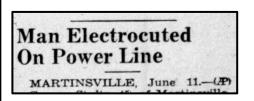
- Stop VF (reentrant wavefronts): Strong shocks
- Prevent reinitiation of VF: Stronger shocks
- <u>Clinical resuscitation</u>: After defibrillation, animals died of postshock "respiratory paralysis" (PEA).

5

Prevost and Battelli's claims were met by disbelief in the West.

In 1940, Carl Wiggers chose not to reinvestigate.

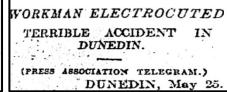
"The idea seemed so fantastic that I read their reports in a biased and unfriendly frame of mind and concluded that their experimental evidence fell short of their claims. I should have considered the possibility that the work might have been presented badly." Reminiscences and adventures. Circ Research 1959.



Poorly written papers may report important findings.

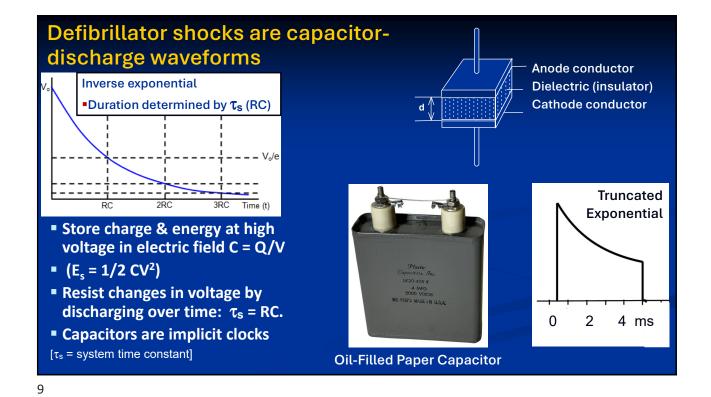
- In USA, AC defibrillation was introduced in 1948. DC defibrillation made no progress until the 1960s.
- But DC defibrillation progressed in the Soviet Union...

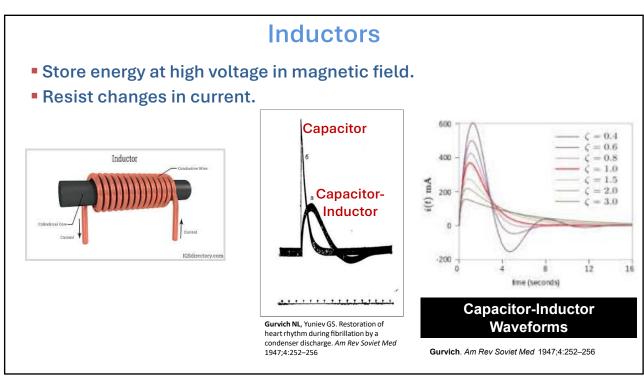
Defibrillation in the USA: Innovation Born From a Crisis in the Electric Power Industry


- Electrification → epidemic of [AC] power-line worker electrocutions that drew public attention in 1920s.
- Research into high-voltage AC determined VF as a cause of death.
- Kouwenhoven (1932) showed that AC could not only induce VF, but also terminate it.
- As a result, the US embarked on 30 years of misguided work on AC defibrillation.

7

Naum Gurvich: Transthoracic Defibrillation in the Soviet Union


- Lina Stern returned to Moscow as Chair of Physiology. Encouraged student Naum Gurvich to study DC defibrillation.
- 1933-39: transthoracic defibrillation experiments to resuscitate ("reanimate") from VF
 - Unwieldy AC: defibrillation dangerous, unreliable, post-shock hypotension/PEA
 - DC: defibrillation: Empirical testing <u>adding inductors</u> of various sizes to <u>capacitive discharge</u> <u>waveforms</u>. Visualized differences in waveforms on oscilloscope
 - 1939: Reliable resuscitation using optimized waveform.
- 1940s: Empirical studies demonstrated superiority of biphasic waveforms.
- 1957: First commercial external DC defibrillator for clinical use.
- 1970: First commercial external DC biphasic defibrillator -> Soviet standard.


Waveform = <u>temporal pattern</u> of <u>shock strength</u> (amplitude) measured by V or I.

RESTORATION OF REGULAR RHYTHM IN THE
MAMMALIAN FIBRILLATING HEART*
N. L. GURVICH AND G. S. YUNIEV

Bull Experiment Biol Med, 1939; 8 (1): 55–58

The Fate of Lina Stern

- During WWII, the Soviet government asked Stern to join a new Anti-Fascist Jewish Association.
- She raised millions of dollars from the American Jews.
- After the war, Stalin accused prominent members of this and other scientific associations of espionage.
- Many were executed. Stern was imprisoned. Others were deported.
- They were replaced by politically correct scientists chosen to promote "socialist" science.
- Western-trained scientists, who were once actively recruited, were banned.
- As a result of political persecution of foreign-born scientists, Soviet science was crippled for decades (e.g. genetics, computer science...).
- By association with Stern, Gurvitch lost his position.

11

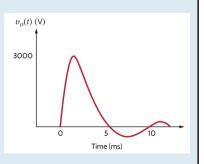
The "Lown" Defibrillator

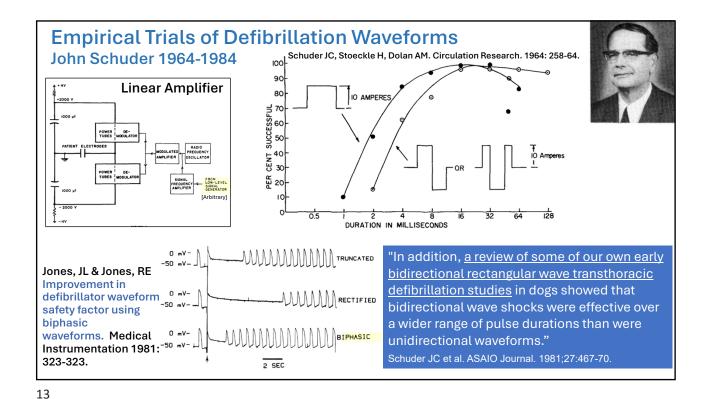
- Gurvich's student Peleska trained engineer Barouh Berkovits.
- 1961: Berkovits builds DC defibrillator based on Gurvich's design for Bernard Lown.*

New Method for Terminating Cardiac Arrhythmias Nov 3, 1962 (JAMA 1962-182-548-5

Use of Synchronized Capacitor Discharge

Bernard Lown, M.D., Raghavan Amarasingham, M.B., B.S., and Jose Neuman, M.D., Boston


"At the present time there is no physiologic basis for predicting a waveform optimal for defibrillation.


Development of an effective instrument, therefore, becomes a tedious trial-and-error procedure...

*Barouch Berkovits BV. Defibrillator. 1966. U.S. Patent No. 3,236,239.

The Shapley-Curtis Debate Taking a Second Look at Data... April 26, 1920 BULLETIN OF THE "In addition, a review of some of our own NATIONAL RESEARCH COUNCIL early ...studies showed that bidirectional Vol. 2, Part 3, May, 1921, Number 11, pp 171-217 wave shocks were more effective ...than THE SCALE OF THE UNIVERSE [*] PART I: BY HARLOW SHAPLEY Mount Wilson Observatory, Carnesi were unidirectional waveforms." PART II: BY HEBER D. CURTIS Schuder JC et al. ASAIO Journal. 1981;27:467-70. Schuder JC, Stoeckle H, Dolan AM. Circulation pol-Research. 1964: 258-64. DURATION IN MILLISECONDS Hubble E. A spiral nebula as a stellar system. Messier 33. Contributions from the Mount Wilson Observatory; Carnegie **Could Schuder have** saved 20 years?

The Vision of an Implantable Defibrillator

- In 1966, chief of medicine at Tel Hashomer Hospital (Israel) Harry Heller died suddenly at dinner.
- His former assistant Michel Mirowski realized that Heller could have been saved by an implantable defibrillator.
- A few weeks later, American thoracic surgeon Victor Parsonet had lunch with Mirowski, who shared his vision.

"To understand the complexity of miniaturization... the desktop version derived its power by plugging it into table ... Mirowski wanted to reduce its size 100-fold to be made into an implantable gizmo. It seemed inconceivable I visualized the enormity of the undertaking and tried gently to discourage him that day."

Parsonnet, Victor. "Oops!." Pacing and Clinical Electrophysiology 35.10 (2012): 1280-1280.

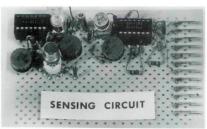
15

Michel Mirowski A Man on a Mission

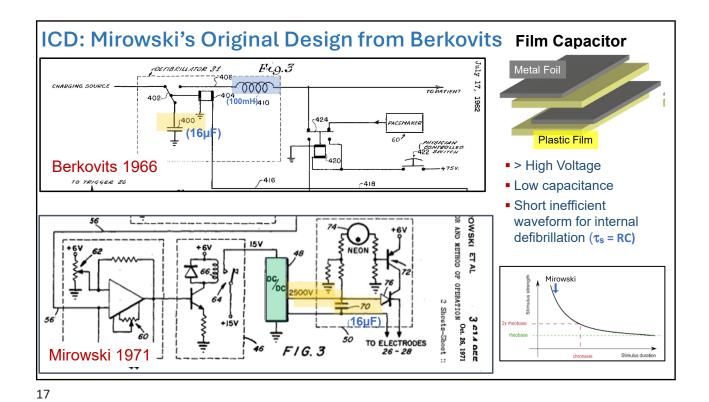
- Had no understanding of
 - Bioelectricity
 - Effects of shocks on contractility
 - Electronic circuitry
- But he had grit.
 - He had skin in the game that drove his vision.
 - He had overcome longer, existential life odds.

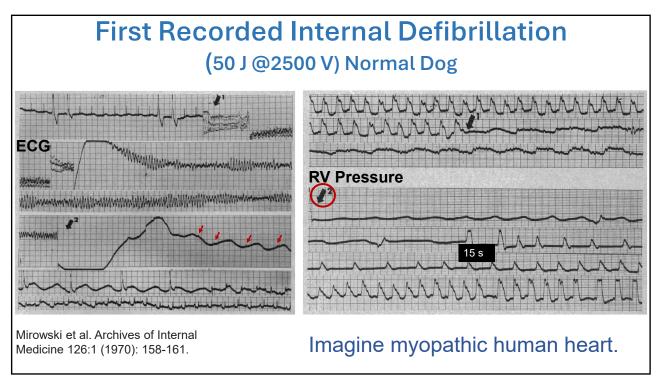
Standby Automatic Defibrillator

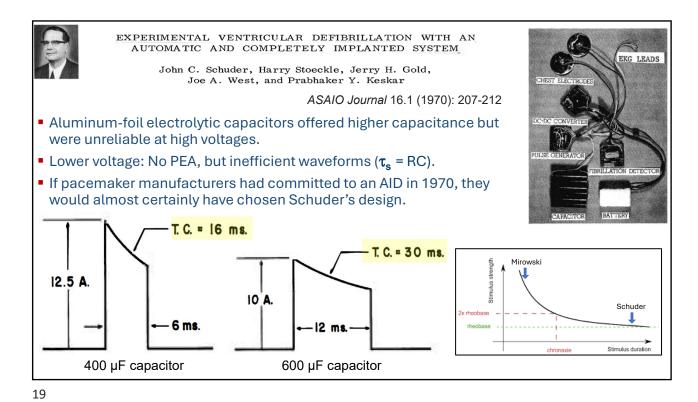
An Approach to Prevention of Sudden Coronary Death


M. Mirowski, MD; Morton M. Mower, MD; William S. Staewen; et al

Archives of Internal Medicine 126:1 (1970): 158-161.

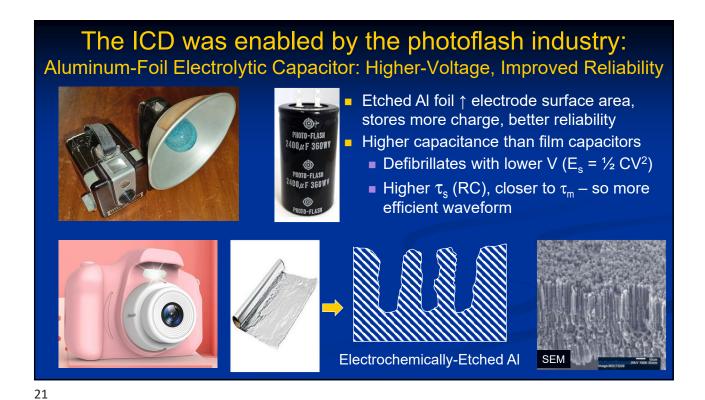


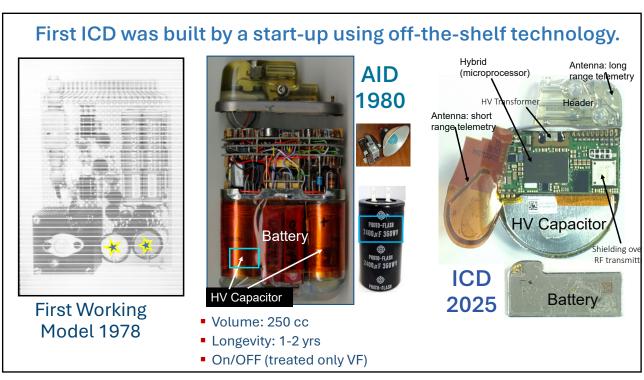


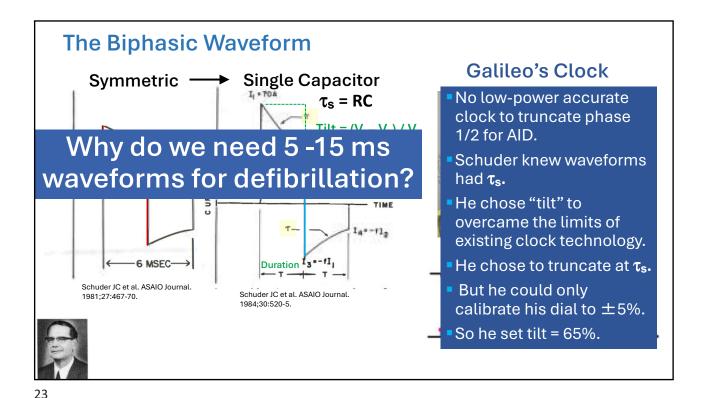

Not Implantable

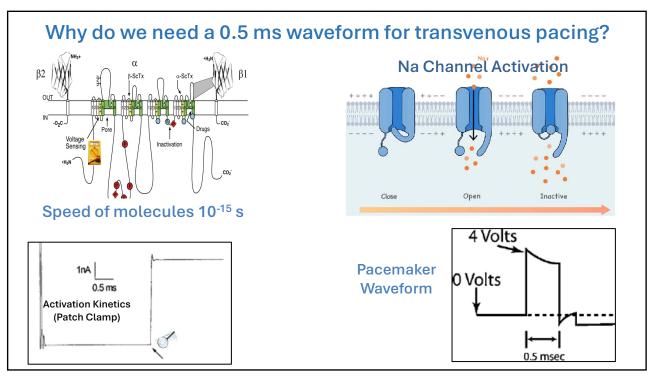
Off-the-Shelf Technology

What did Key Opinion Leaders say?


"There is serious question whether an indication can be spelled out for the use of an implanted standby defibrillator.... In fact, the system represents an imperfect solution in search of a plausible and practical application."


Lown, Bernard and Paul Axelrod. "Implanted standby defibrillators." Circulation 46.4 (1972): 637-639.


"Medtronic and Cordisconcurred with my conclusion that Mirowski's idea was impractical and that he was an unrealistic dreamer. And so, his appeals to them were spurned...


Parsonnet, Victor. "Oops!" Pacing and Clinical Electrophysiology 35.10 (2012): 1280-1280.

This was lucky for Mirowski

Modeling Defibrillation Waveforms Mark Kroll 1993-4

Kroll MW. A minimal model of the monophasic defibrillation pulse. PACE. 1993;16:769-77.

Kroll MW. A minimal model of the single capacitor biphasic defibrillation waveform. PACE. 1994;17:1782-1792.

Optimal waveform defibrillates with the lowest stored energy.

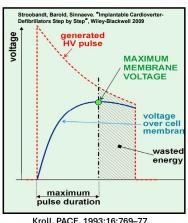
Kroll's Assumptions

Defibrillation can be modeled as discharging a highvoltage defibrillator capacitor into the heart to

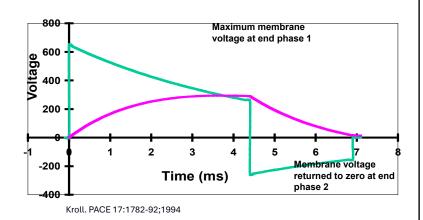
- Charge the cell membrane capacitor [Phase 1]
- Discharge the cell-membrane capacitor [phase 2]

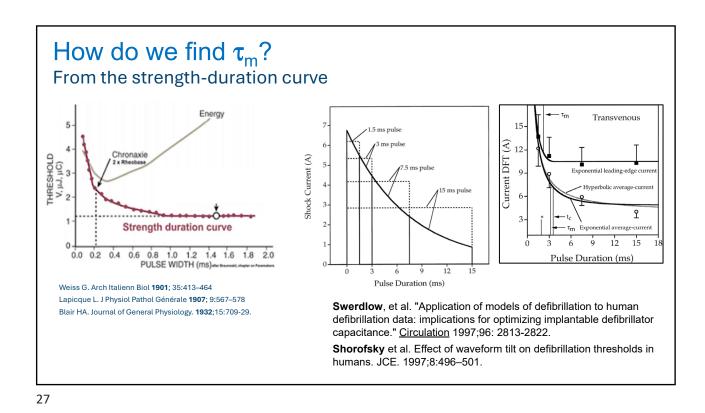
Optimal Phase 1: charges cell membrane to maximum voltage at truncation.

Optimal Phase 2: returns cell membrane voltage to baseline at truncation.


Solved for

- Optimal waveform for arbitrary capacitance
- Optimal capacitance for an ICD


25


Efficient defibrillation waveforms have an electronic time constant (τ_s) tuned to the cardiac cell membrane's biological time constant (τ_m) .

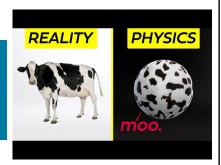
- Ion channels in cell membranes also have time constants (τ_m) .
- Membranes reach maximum voltage at a time that depends only on τ_m .
- Shorter/longer pulses are inefficient.

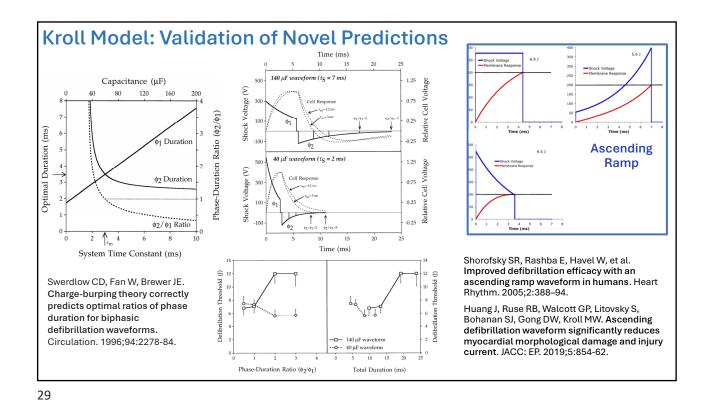
Kroll, PACE, 1993;16;769-77.

supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience.

~ Albert Einstein June 10, 1933

The Unreasonable Effectiveness of Mathematics in the Natural Sciences


E. P. Wigner


 $Symmetries \ and \ Reflections. \\ Indiana \ University \ Press, \ Bloomington, \ Ihdiana, \ 1967, \ pp. \ 222-237$

Is Kroll's model unreasonably effective in predicting optimal waveforms or a spherical cow?

Do Waveforms Matter in 2025? **Methods of Waveform Truncation** The Problem of Gradually-Rising Shock Z in Gore Coated Leads Swerdlow CD et al. Impedance in the Diagnosis of Lead Malfunction. Circ AE Boston_c **Important Medical Device Information** 11 Rhythm Management 4100 Hamline Avenue North St. Paul, MN 55112-5798 www.bostonscientific.com July 2025 Subject: Management of gradually rising daily subthreshold, low-voltage shock impedance (LVSI) pattern associated with calcification of expanded polytetrafluoroethylene (ePTFE) coated single coil (SC) and dual coil (DC) RELIANCETM defibrillation leads manufactured by Boston Scientific Corporation (BSC) from 2002 to 2021 that are no longer available for distribution. See Appendix B for a list of affected lead models. Description: The association of calcified defibrillation lead coil(s) with a pattern of gradually rising LVSI measurements has been reported to BSC and described in several publications^{1,2,3,4,5,6}. This calcification phenomenon can biologically encapsulate and electrically insulate the defibrillation lead coil(s). BSC has completed a comprehensive investigation of ePTFE RELIANCE lead Fixed Tilt

Consider...

Kroll's Background

- In defibrillation: NOI
- Sources

Weiss G. Arch Italienn Biol **1901**; 35:413–464 Lapicque L. J Physiol Pathol Générale **1907**; 9:567–578 Blair HA. Journal of General Physiology. **1932**;15:709-29.

Kroll's insights could have been made as early as the 1960s.

31

What can we learn from progress in defibrillation?

- it was hindered by lack of fundamental understanding at every step.
- It depended on advances in enabling technology.
- In the west, it was delayed by academic misogyny, KOLs.
- In the USSR, it was delayed by xenophobia and antisemitism.
- It did not occur in dominant medical device companies.
- It highlights the importance of clear scientific writing and reading poorly written papers with an open mind.
- IT COULD HAVE OCCURRED YEARS EARLIER.

LESSONS LEARNED

Delays in Defibrillation Technology	
Delay	Possible Reasons
Adding an inductor to the DC circuit	• ? [lack of basic understanding of circuits]
Adopting DC defibrillation in the USA	Focus on cause of AC electrocutionKOL reinforce "acceptable research"
The biphasic waveform	No mathematical/conceptual model of defibrillation
Waveform research guided by mathematical models	 Modeling not in investigator's conceptual framework.
Commercializeing the AID after "proof of concept"	 KOL; limited access to suitable HV capacitor

Conceptual framework guides what questions are asked and how results are interpreted. DAVID MCRANEY TO ASK THE RIGHT QUESTION IS ALREADY HALF THE SOLUTION OF A PROBLEM. - CARL JUNG TO ASK THE RIGHT QUESTION IS ALREADY HALF THE SOLUTION OF A PROBLEM. - CARL JUNG -

